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Introduction	to	Real	Analysis	is	a	comprehensive	book	for	undergraduate	student	s	of	Mathematics.	The	book	comprises	chapters	on	preliminaries,	the	real	numbers,	sequences	and	states,	limits,	continuous	functions,	differentiation,	infinite	series,	and	the	generalized	Reimann	Integral.	In	addition,	the	book	consists	of	several	chapterwise	problems	to
understand	the	concepts	better.	This	book	is	essential	for	students	who	aspire	to	learn	the	basic	concepts	and	techniques	of	real	analysis.	About	Wiley	India	Pvt.	Ltd.	Wiley	India	Pvt.	Ltd.	is	the	Indian	chapter	of	John	Wiley	&	Sons,	Inc.,	which	is	a	leading	publisher	globally.	They	develop	and	publish	quality	and	scholarly	books,	journals,	online	content,
reference	works,	and	are	also	into	certification	and	training	services,	and	online	applications	among	many	other	things.	Wiley	India	Pvt.	Ltd.	is	publishing	quality	educational	and	professional	books.	Some	of	the	books	published	under	their	banner	are	Principles	of	Physics,	Operating	System	Principles,	Calculus,	An	Introduction	to	Probability	and
Statistics,	and	Gravitation	and	Cosmology.	By:	Jiří	Lebl	(website	#1	(personal),	website	#2	(work:	OSU),	email:	)	Jump	to:	[Download	the	book	(volume	I)	as	PDF]	[volume	II	as	PDF]	[Buy	paperback	(volume	I)	on	Amazon]	[volume	II	on	Amazon]	[Web	version]	[Search]	This	free	online	textbook	(OER	more	formally)	is	a	course	in	undergraduate	real
analysis	(somewhere	it	is	called	"advanced	calculus").	The	book	is	meant	both	for	a	basic	course	for	students	who	do	not	necessarily	wish	to	go	to	graduate	school,	but	also	as	a	more	advanced	course	that	also	covers	topics	such	as	metric	spaces	and	should	prepare	students	for	graduate	study.	A	prerequisite	for	the	course	is	a	basic	proof	course.	An
advanced	course	could	be	two	semesters	long	with	some	of	the	second-semester	topics	such	as	multivariable	differential	calculus,	path	integrals,	and	the	multivariable	integral	using	the	second	volume.	There	are	more	topics	than	can	be	covered	in	two	semesters,	and	it	can	also	be	reading	for	beginning	graduate	students	to	refresh	their	analysis	or
fill	in	some	of	the	holes.	This	book	started	its	life	as	my	lecture	notes	for	Math	444	at	the	University	of	Illinois	at	Urbana-Champaign	(UIUC)	in	the	fall	semester	of	2009.	It	was	later	enhanced	to	teach	the	Math	521/522	sequence	at	University	of	Wisconsin-Madison	(UW-Madison)	and	the	Math	4143/4153	sequence	at	Oklahoma	State	University	(OSU).
The	book	(volume	I)	starts	with	analysis	on	the	real	line,	going	through	sequences,	series,	and	then	into	continuity,	the	derivative,	and	the	Riemann	integral	using	the	Darboux	approach.	There	are	plenty	of	available	detours	along	the	way,	or	we	can	power	through	towards	the	metric	spaces	in	chapter	7.	The	philosophy	is	that	metric	spaces	are
absorbed	much	better	by	the	students	after	they	have	gotten	comfortable	with	basic	analysis	techniques	in	the	very	concrete	setting	of	the	real	line.	As	a	bonus,	the	book	can	be	used	both	by	a	slower-paced,	less	abstract	course,	and	a	faster-paced	more	abstract	course	for	future	graduate	students.	The	slower	course	never	reaches	metric	spaces.	A
nice	capstone	theorem	for	such	a	course	is	the	Picard	theorem	on	existence	and	uniqueness	of	ordinary	differential	equations,	a	proof	which	brings	together	everything	one	has	learned	in	the	course.	A	faster-paced	course	would	generally	reach	metric	spaces,	and	as	a	reward	such	students	can	see	a	streamlined	(but	more	abstract)	proof	of	Picard.
Volume	II	continues	into	multivariable	analysis.	Starting	with	differential	calculus,	including	inverse	and	implicit	function	theorems,	continuing	with	differentiation	under	the	integral	and	path	integrals,	which	are	often	not	covered	in	a	course	like	this,	and	multivariable	Riemann	integral.	Finally,	there	is	also	a	chapter	on	power	series,	Arzelà-Ascoli,
Stone-Weierstrass,	and	Fourier	series.	Together	the	two	volumes	provide	enough	material	for	several	different	types	of	year-long	sequences.	A	student	who	absorbs	the	first	volume	and	the	first	three	chapters	of	volume	II	should	be	more	than	prepared	for	graduate	real	and	complex	analysis	courses.	I	have	tried	(especially	in	recent	editions)	to	add
many	diagrams	and	graphs	to	graphically	illustrate	the	proofs	and	make	them	more	accessible.	Usually,	these	are	precise	and	more	in-depth	versions	of	the	drawings	I	attempt	on	the	board	in	class.	Together,	the	two	volumes	have	over	a	hundred	figures.	The	aim	is	to	provide	a	low	cost,	redistributable,	not	overly	long,	high-quality	textbook	that
students	will	actually	keep	rather	than	selling	back	after	the	semester	is	over.	Even	if	the	students	throw	it	out,	they	can	always	look	it	up	on	the	net	again.	You	are	free	to	have	a	local	bookstore	or	copy	store	make	and	sell	copies	for	your	students.	See	below	about	the	license.	One	reason	for	making	the	book	freely	available	is	to	allow	modification
and	customization	for	a	specific	purpose	if	necessary	(as	the	University	of	Pittsburgh	has	done	for	example).	If	you	do	modify	this	book,	make	sure	to	mark	them	prominently	as	such	to	avoid	confusion.	This	aspect	is	also	important	for	the	longevity	of	the	book.	The	book	can	be	updated	and	modified	even	if	I	happen	to	drop	off	the	face	of	the	earth.
You	do	not	have	to	depend	on	any	publisher	being	interested	as	with	traditional	textbooks.	Furthermore,	errata	are	fixed	promptly,	meaning	that	if	you	teach	the	same	class	next	term,	all	errata	that	are	spotted	are	most	likely	already	fixed.	No	need	to	wait	several	years	for	a	new	edition.	Every	once	in	a	while	I	make	some	major	addition	and	a	new
major	version	(edition),	and	then	in	between	as	errata	are	fixed	I	make	minor	version	updates	(like	a	corrected	printing)	usually	once	or	twice	a	year,	depending	on	the	errata	discovered.	Exercise,	chapter,	and	section	numbers	are	preserved	as	much	as	humanly	possible.	What's	added	is	added	at	the	end	with	new	numbers,	so	the	book	is	generally
compatible	even	if	students	(or	the	instructor)	have	an	older	printed	copy.	The	minor	updates	are	totally	interchangeable	and	have	very	minimal	changes,	essentially	nothing	new.	MAA	published	a	review	of	the	book	(they	looked	at	the	December	2012	edition	of	Volume	I,	there	was	only	the	first	volume	then).	Table	of	contents:	Introduction	1.	Real
Numbers	2.	Sequences	and	Series	3.	Continuous	Functions	4.	The	Derivative	5.	The	Riemann	Integral	6.	Sequences	of	Functions	7.	Metric	Spaces	Volume	II:	8.	Several	Variables	and	Partial	Derivatives	9.	One	Dimensional	Integrals	in	Several	Variables	10.	Multivariable	Integral	11.	Functions	as	Limits	There	are	528	exercises	and	65	figures	in	Volume
I	(version	5.4,	that	is,	June	8th	2021	edition).	There	are	263	exercises	and	43	figures	in	Volume	II	(version	2.4,	that	is,	June	8th	2021	edition).	Please	let	me	know	at	if	you	find	any	typos	or	have	corrections,	extra	exercises	or	material,	or	any	other	comments.	There	is	no	solutions	manual	for	the	exercises.	This	situation	is	intentional.	There	is	an
unfortunately	large	number	of	problems	with	solutions	out	there	already.	Part	of	learning	how	to	do	proofs	is	to	learn	how	to	recognize	your	proof	is	correct.	Looking	at	someone	else's	proof	is	a	far	less	effective	way	of	checking	your	proof	than	actually	checking	your	proof.	It	is	like	going	the	gym	and	watching	other	people	work	out.	The	exercises	in
the	book	are	meant	to	be	a	gym	for	the	mind.	If	you	are	unsure	about	the	correctness	of	a	solution,	then	you	do	not	yet	have	a	solution.	Furthermore,	the	best	solution	for	the	student	is	the	one	that	the	student	comes	up	with	on	their	own,	not	necessarily	the	one	that	the	professor	or	the	book	author	comes	up	with.	Adoption:	Do	let	me	know	()	if	you
use	the	book	for	teaching	a	course!	The	book	was	used,	or	is	being	used,	as	the	primary	textbook	at	(other	than	my	courses	at	UIUC,	UCSD,	UW-Madison,	and	OSU)	University	of	California	at	Berkeley,	University	of	Pittsburgh,	Vancouver	Island	University,	Western	Illinois	University,	Medgar	Evers	College,	San	Diego	State	University,	University	of
Toledo,	Oregon	Institute	of	Technology,	Iowa	State	University,	California	State	University	Dominguez	Hills,	St.	John's	University	of	Tanzania,	Mary	Baldwin	College,	Ateneo	De	Manila	University,	University	of	New	Brunswick	Saint	John,	and	many	others.	See	below	for	a	more	complete	list.	The	book	has	been	selected	as	an	Approved	Textbook	in	the
American	Institute	of	Mathematics	Open	Textbook	Initiative.	See	a	list	of	classroom	adoptions	for	more	details.	Download:	Download	the	volume	I	of	the	book	as	PDF	(Version	5.4,	June	8th,	2021,	282	pages,	1.8	MB	download)	Download	the	volume	II	of	the	book	as	PDF	(Version	2.4,	June	8th,	2021,	195	pages,	1.4	MB	download)	Check	for	any	errata
(volume	I)	(volume	II)	in	the	current	version.	Look	at	the	change	log	(volume	I)	(volume	II)	to	see	what	changed	in	the	newest	version.	I	started	numbering	things	with	version	numbers	starting	at	4.0	for	volume	I,	and	version	1.0	for	volume	II.	The	first	number	is	the	major	number	and	it	really	means	"edition"	and	will	be	raised	when	substantial
changes	are	made.	The	second	number	is	raised	for	corrections	only.	Buy	paperback:	I	get	a	bit	of	money	when	you	buy	these	(depending	on	where	exactly	they	are	bought).	Probably	enough	to	buy	me	a	coffee	(as	long	as	it	is	not	a	fancy	coffee),	so	by	buying	a	copy	you	will	support	this	project.	You	will	also	save	your	toner	cartridge.	Lulu	always	has
the	most	up	to	date	version	more	quickly	than	amazon,	the	difference	is	usually	in	terms	of	days	or	weeks.	The	paperback	copy	is	on	Crown	Quatro	size	(7.44x9.68	inch),	and	the	two	versions	of	it	(amazon	and	lulu)	are	essentially	identical	except	for	cover	art	(there	are	those	who	like	the	blue).	I	tested	both	and	they	both	print	quite	well,	so	the	quality
is	approximately	the	same,	and	I	have	seen	some	of	them	take	quite	a	bit	of	beating	by	students.	Lulu	also	allows	me	to	make	a	larger	(US	letter	size)	coil	bound	version	which	I	prefer	to	get	when	teaching,	as	it	can	easily	be	opened	and	kept	on	a	certain	page.	It	may	be	easier	to	read,	and	take	notes	in	as	it	has	larger	font	and	wider	margins,	though	a
little	less	portable.	It's	only	a	few	dollars	more.	Volume	I:	Buy	the	smaller	paperback	copy	at	lulu.com	for	$13.20.	Or	buy	the	larger	coil-bound	copy	at	lulu.com	for	$15.08.	This	copy	is	the	version	5.4	(June	8th,	2021)	revision	of	volume	I.	No	ISBN	for	the	lulu	version.	Buy	the	smaller	paperback	copy	on	Amazon	for	$13.20.	This	copy	is	the	version	5.4
(June	8th,	2021)	revision	of	volume	I.	ISBN-13:	978-1718862401	ISBN-10:	1718862407	Volume	II:	Buy	the	smaller	paperback	copy	at	lulu.com	for	$11.00.	Or	buy	the	larger	coil-bound	copy	at	lulu.com	for	$12.47.	This	copy	is	the	version	2.4	(June	8th,	2021)	revision	of	volume	II.	No	ISBN	for	the	lulu	version.	Buy	the	smaller	paperback	copy	on	Amazon
for	$11.00.	This	copy	is	the	version	2.4	(June	8th,	2021)	revision	of	volume	II.	ISBN-13:	978-1718865488	ISBN-10:	1718865481	Web	version:	Browse	the	book	in	a	web	version	of	both	volumes	put	together.	The	PDF	version	is	the	authoritative	copy,	and	will	print	far	better.	Search:	Search	the	web	version	(Google	puts	in	a	bunch	of	ads	at	the	top	of
every	search,	unfortunately,	can't	get	rid	of	that):	Source:	The	source	is	hosted	on	GitHub:	(both	volumes).	You	can	get	an	archive	of	the	source	of	the	released	version	on	github,	look	under	though	if	you	plan	to	work	with	it,	maybe	best	to	look	at	just	the	latest	working	version	as	that	might	have	errata	fixes	or	new	additions.	On	the	other	hand,	this
might	be	a	work	in	progress.	Just	ask	me	if	unsure.	Volume	I	is	realanal.tex	and	volume	II	is	realanal2.tex	(those	are	the	"driver	files"	text	is	in	separate	files	for	each	chapter).	I	compile	the	pdf	with	pdflatex.	You	need	to	compile	the	first	volume	first	before	the	second	volume.	You	might	need	to	run	makeindex	(for	the	index)	and	makeglossary	(for	the
list	of	notations)	as	well,	though	theoretically	it	should	now	be	handled	automatically.	There	are	scripts	publish.sh	and	publish2.sh,	that	run	everything	an	obnoxious	number	of	times	to	make	sure	it	all	works.	During	the	writing	of	this	book,	the	author	was	in	part	supported	by	NSF	grant	DMS-0900885	and	DMS-1362337.	License:	This	work	is	dual
licensed	under	a	Creative	Commons	Attribution-Noncommercial-Share	Alike	4.0	License	and	Creative	Commons	Attribution-Share	Alike	4.0	License.	You	can	use,	print,	copy,	and	share	this	book	as	much	as	you	want.	You	can	base	your	own	book/notes	on	these	and	reuse	parts	if	you	keep	the	license	the	same	(that	is,	as	long	as	you	use	at	least	one	of
the	two	licenses).	Robert	G.	Bartle,	Donald	R.	Sherbert,	Introduction	to	real	analysis,	3rd	ed.,	John	Wiley	&	Sons	Inc.,	2000.	John	P.	D'Angelo,	Douglas	B.	West,	Mathematical	Thinking:	Problem-Solving	and	Proofs,	2nd	ed.,	Prentice	Hall,	1999.	Joseph	E.	Fields,	A	Gentle	Introduction	to	the	Art	of	Mathematics,	.	Richard	Hammack,	Book	of	Proof,
rhammack/BookOfProof/.	Maxwell	Rosenlicht,	Introduction	to	analysis,	Reprint	of	the	1968	edition,	Dover	Publications	Inc.,	1986.	ISBN:0-486-65038-3	Walter	Rudin,	Principles	of	mathematical	analysis,	3rd	ed.,	McGraw-Hill	Book	Co.,	1976.	William	F.	Trench,	Introduction	to	real	analysis,	Pearson	Education,	2003,	.	You're	Reading	a	Free	Preview
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Full	Download:	This	sample	only,	Download	all	chapters	at:	alibabadownload.com	2.	CHAPTER	1	PRELIMINARIES	We	suggest	that	this	chapter	be	treated	as	review	and	covered	quickly,	without	detailed	classroom	discussion.	For	one	reason,	many	of	these	ideas	will	be	already	familiar	to	the	students	—	at	least	informally.	Further,	we	believe	that,	in
practice,	those	notions	of	importance	are	best	learned	in	the	arena	of	real	analysis,	where	their	use	and	significance	are	more	apparent.	Dwelling	on	the	formal	aspect	of	sets	and	functions	does	not	contribute	very	greatly	to	the	students’	understanding	of	real	analysis.	If	the	students	have	already	studied	abstract	algebra,	number	theory	or	com-
binatorics,	they	should	be	familiar	with	the	use	of	mathematical	induction.	If	not,	then	some	time	should	be	spent	on	mathematical	induction.	The	third	section	deals	with	finite,	infinite	and	countable	sets.	These	notions	are	important	and	should	be	briefly	introduced.	However,	we	believe	that	it	is	not	necessary	to	go	into	the	proofs	of	these	results	at
this	time.	Section	1.1	Students	are	usually	familiar	with	the	notations	and	operations	of	set	algebra,	so	that	a	brief	review	is	quite	adequate.	One	item	that	should	be	mentioned	is	that	two	sets	A	and	B	are	often	proved	to	be	equal	by	showing	that:	(i)	if	x	∈	A,	then	x	∈	B,	and	(ii)	if	x	∈	B,	then	x	∈	A.	This	type	of	element-wise	argument	is	very	common	in
real	analysis,	since	manipulations	with	set	identities	is	often	not	suitable	when	the	sets	are	complicated.	Students	are	often	not	familiar	with	the	notions	of	functions	that	are	injective	(=	one-one)	or	surjective	(=	onto).	Sample	Assignment:	Exercises	1,	3,	9,	14,	15,	20.	Partial	Solutions:	1.	(a)	B	∩	C	=	{5,	11,	17,	23,	.	.	.}	=	{6k	−	1	:	k	∈	N},	A	∩	(B	∩	C)
=	{5,	11,	17}	(b)	(A	∩	B)	C	=	{2,	8,	14,	20}	(c)	(A	∩	C)	B	=	{3,	7,	9,	13,	15,	19}	2.	The	sets	are	equal	to	(a)	A,	(b)	A	∩	B,	(c)	the	empty	set.	3.	If	A	⊆	B,	then	x	∈	A	implies	x	∈	B,	whence	x	∈	A∩B,	so	that	A	⊆	A	∩	B	⊆	A.	Thus,	if	A	⊆	B,	then	A	=	A	∩	B.	Conversely,	if	A	=	A	∩	B,	then	x	∈	A	implies	x	∈	A	∩	B,	whence	x	∈	B.	Thus	if	A	=	A	∩	B,	then	A	⊆	B.	4.
If	x	is	in	A	(B	∩	C),	then	x	is	in	A	but	x	/∈	B	∩	C,	so	that	x	∈	A	and	x	is	either	not	in	B	or	not	in	C.	Therefore	either	x	∈	A	B	or	x	∈	A	C,	which	implies	that	x	∈	(A	B)	∪	(A	C).	Thus	A	(B	∩	C)	⊆	(A	B)	∪	(A	C).	1	3.	2	Bartle	and	Sherbert	Conversely,	if	x	is	in	(A	B)	∪	(A	C),	then	x	∈	A	B	or	x	∈	A	C.	Thus	x	∈	A	and	either	x	/∈	B	or	x	/∈	C,	which	implies	that	x	∈	A
but	x	/∈	B	∩	C,	so	that	x	∈	A	(B	∩	C).	Thus	(A	B)	∪	(A	C)	⊆	A	(B	∩	C).	Since	the	sets	A	(B	∩C)	and	(A	B)∪(A	C)	contain	the	same	elements,	they	are	equal.	5.	(a)	If	x	∈	A	∩	(B	∪	C),	then	x	∈	A	and	x	∈	B	∪	C.	Hence	we	either	have	(i)	x	∈	A	and	x	∈	B,	or	we	have	(ii)	x	∈	A	and	x	∈	C.	Therefore,	either	x	∈	A	∩	B	or	x	∈	A	∩	C,	so	that	x	∈	(A	∩	B)	∪	(A	∩	C).
This	shows	that	A	∩	(B	∪	C)	is	a	subset	of	(A	∩	B)	∪	(A	∩	C).	Conversely,	let	y	be	an	element	of	(A	∩	B)	∪	(A	∩	C).	Then	either	(j)	y	∈	A	∩	B,	or	(jj)	y	∈	A	∩	C.	It	follows	that	y	∈	A	and	either	y	∈	B	or	y	∈	C.	Therefore,	y	∈	A	and	y	∈	B	∪	C,	so	that	y	∈	A	∩	(B	∪	C).	Hence	(A	∩	B)	∪	(A	∩	C)	is	a	subset	of	A	∩	(B	∪	C).	In	view	of	Definition	1.1.1,	we	conclude
that	the	sets	A	∩	(B	∪	C)	and	(A	∩	B)	∪	(A	∩	C)	are	equal.	(b)	Similar	to	(a).	6.	The	set	D	is	the	union	of	{x	:	x	∈	A	and	x	/∈	B}	and	{x	:	x	/∈	A	and	x	∈	B}.	7.	Here	An	=	{n	+	1,	2(n	+	1),	.	.	.}.	(a)	A1	=	{2,	4,	6,	8,	.	.	.},	A2	=	{3,	6,	9,	12,	.	.	.},	A1	∩	A2	=	{6,	12,	18,	24,	.	.	.}	=	{6k	:	k	∈	N}	=	A5.	(b)	An	=	N	{1},	because	if	n	>	1,	then	n	∈	An−1;	moreover
1	/∈	An.	Also	An	=	∅,	because	n	/∈	An	for	any	n	∈	N.	8.	(a)	The	graph	consists	of	four	horizontal	line	segments.	(b)	The	graph	consists	of	three	vertical	line	segments.	9.	No.	For	example,	both	(0,	1)	and	(0,	−	1)	belong	to	C.	10.	(a)	f(E)	=	{1/x2	:	1	≤	x	≤	2}	=	{y	:	1	4	≤	y	≤	1}	=	[1	4	,	1].	(b)	f−1(G)	=	{x	:	1	≤	1/x2	≤	4}	=	{x	:	1	4	≤	x2	≤	1}	=	[−1,	−1	2	]
∪	[1	2	,	1].	11.	(a)	f(E)	=	{x	+	2	:	0	≤	x	≤	1}	=	[2,	3],	so	h(E)	=	g(f(E))	=	g([2,	3])	=	{y2	:	2	≤	y	≤	3}	=	[4,	9].	(b)	g−1(G)	=	{y	:	0	≤	y2	≤	4}	=	[−2,	2],	so	h−1(G)	=	f−1(g−1(G))	=	f−1([−2,	2])	=	{x	:	−2	≤	x	+	2	≤	2}	=	[−4,	0].	12.	If	0	is	removed	from	E	and	F,	then	their	intersection	is	empty,	but	the	intersection	of	the	images	under	f	is	{y	:	0	<	y	≤	1}.
13.	E	F	=	{x	:	−1	≤	x	<	0},	f(E)	f(F)	is	empty,	and	f(E	F)	=	{y	:	0	<	y	≤	1}.	14.	If	y	∈	f(E	∩	F),	then	there	exists	x	∈	E	∩	F	such	that	y	=	f(x).	Since	x	∈	E	implies	y	∈	f(E),	and	x	∈	F	implies	y	∈	f(F),	we	have	y	∈	f(E)	∩	f(F).	This	proves	f(E	∩	F)	⊆	f(E)	∩	f(F).	15.	If	x	∈	f−1(G)	∩	f−1(H),	then	x	∈	f−1(G)	and	x	∈	f−1(H),	so	that	f(x)	∈	G	and	f(x)	∈	H.	Then	f(x)
∈	G	∩	H,	and	hence	x	∈	f−1(G	∩	H).	This	shows	4.	Chapter	1	—	Preliminaries	3	that	f−1(G)	∩	f−1(H)	⊆	f−1(G	∩	H).	The	opposite	inclusion	is	shown	in	Example	1.1.8(b).	The	proof	for	unions	is	similar.	16.	If	f(a)	=	f(b),	then	a/	√	a2	+	1	=	b/	√	b2	+	1,	from	which	it	follows	that	a2	=	b2.	Since	a	and	b	must	have	the	same	sign,	we	get	a	=	b,	and	hence	f	is
injective.	If	−1	<	y	<	1,	then	x	:=	y/	1	−	y2	satisfies	f(x)	=	y	(why?),	so	that	f	takes	R	onto	the	set	{y	:	−	1	<	y	<	1}.	If	x	>	0,	then	x	=	√	x2	<	√	x2	+	1,	so	it	follows	that	f(x)	∈	{y	:	0	<	y	<	1}.	17.	One	bijection	is	the	familiar	linear	function	that	maps	a	to	0	and	b	to	1,	namely,	f(x)	:=	(x	−	a)/(b	−	a).	Show	that	this	function	works.	18.	(a)	Let	f(x)	=	2x,	g(x)
=	3x.	(b)	Let	f(x)	=	x2,	g(x)	=	x,	h(x)	=	1.	(Many	examples	are	possible.)	19.	(a)	If	x	∈	f−1(f(E)),	then	f(x)	∈	f(E),	so	that	there	exists	x1	∈	E	such	that	f(x1)	=	f(x).	If	f	is	injective,	then	x1	=	x,	whence	x	∈	E.	Therefore,	f−1(f(E))	⊆	E.	Since	E	⊆	f−1(f(E))	holds	for	any	f,	we	have	set	equality	when	f	is	injective.	See	Example	1.1.8(a)	for	an	example.	(b)	If	y	∈
H	and	f	is	surjective,	then	there	exists	x	∈	A	such	that	f(x)	=	y.	Then	x	∈	f−1(H)	so	that	y	∈	f(f−1(H)).	Therefore	H	⊆	f(f−1(H)).	Since	f(f−1(H))	⊆	H	for	any	f,	we	have	set	equality	when	f	is	surjective.	See	Example	1.1.8(a)	for	an	example.	20.	(a)	Since	y	=	f(x)	if	and	only	if	x	=	f−1(y),	it	follows	that	f−1(f(x))	=	x	and	f(f−1(y))	=	y.	(b)	Since	f	is	injective,
then	f−1	is	injective	on	R(f).	And	since	f	is	surjec-	tive,	then	f−1	is	defined	on	R(f)	=	B.	21.	If	g(f(x1))	=	g(f(x2)),	then	f(x1)	=	f(x2),	so	that	x1	=	x2,	which	implies	that	g	◦	f	is	injective.	If	w	∈	C,	there	exists	y	∈	B	such	that	g(y)	=	w,	and	there	exists	x	∈	A	such	that	f(x)	=	y.	Then	g(f(x))	=	w,	so	that	g	◦	f	is	surjective.	Thus	g	◦	f	is	a	bijection.	22.	(a)	If	f(x1)
=	f(x2),	then	g(f(x1))	=	g(f(x2)),	which	implies	x1	=	x2,	since	g	◦	f	is	injective.	Thus	f	is	injective.	(b)	Given	w	∈	C,	since	g	◦	f	is	surjective,	there	exists	x	∈	A	such	that	g(f(x))	=	w.	If	y	:=	f(x),	then	y	∈	B	and	g(y)	=	w.	Thus	g	is	surjective.	23.	We	have	x	∈	f−1(g−1(H))	⇐⇒	f(x)	∈	g−1(H)	⇐⇒	g(f(x))	∈	H	⇐⇒	x	∈	(g	◦	f)−1(H).	24.	If	g(f(x))	=	x	for	all	x	∈	D(f),
then	g	◦	f	is	injective,	and	Exercise	22(a)	implies	that	f	is	injective	on	D(f).	If	f(g(y))	=	y	for	all	y	∈	D(g),	then	Exercise	22(b)	implies	that	f	maps	D(f)	onto	D(g).	Thus	f	is	a	bijection	of	D(f)	onto	D(g),	and	g	=	f−1.	Section	1.2	The	method	of	proof	known	as	Mathematical	Induction	is	used	frequently	in	real	analysis,	but	in	many	situations	the	details	follow
a	routine	patterns	and	are	5.	4	Bartle	and	Sherbert	left	to	the	reader	by	means	of	a	phrase	such	as:	“The	proof	is	by	Mathematical	Induction”.	Since	may	students	have	only	a	hazy	idea	of	what	is	involved,	it	may	be	a	good	idea	to	spend	some	time	explaining	and	illustrating	what	constitutes	a	proof	by	induction.	Pains	should	be	taken	to	emphasize	that
the	induction	hypothesis	does	not	entail	“assuming	what	is	to	be	proved”.	The	inductive	step	concerns	the	validity	of	going	from	the	assertion	for	k	∈	N	to	that	for	k	+	1.	The	truth	of	falsity	of	the	individual	assertion	is	not	an	issue	here.	Sample	Assignment:	Exercises	1,	2,	6,	11,	13,	14,	20.	Partial	Solutions:	1.	The	assertion	is	true	for	n	=	1	because
1/(1	·	2)	=	1/(1	+	1).	If	it	is	true	for	n	=	k,	then	it	follows	for	k	+	1	because	k/(k	+	1)	+	1/[(k	+	1)(k	+	2)]	=	(k	+	1)/(k	+	2).	2.	The	statement	is	true	for	n	=	1	because	[1	2	·	1	·	2]2	=	1	=	13.	For	the	inductive	step,	use	the	fact	that	1	2	k(k	+	1)	2	+	(k	+	1)3	=	1	2	(k	+	1)(k	+	2)	2	.	3.	It	is	true	for	n	=	1	since	3	=	4	−	1.	If	the	equality	holds	for	n	=	k,	then
add	8(k	+	1)	−	5	=	8k	+	3	to	both	sides	and	show	that	(4k2	−	k)	+	(8k	+	3)	=	4(k	+	1)2	−	(k	+	1)	to	deduce	equality	for	the	case	n	=	k	+	1.	4.	It	is	true	for	n	=	1	since	1	=	(4	−	1)/3.	If	it	is	true	for	n	=	k,	then	add	(2k	+	1)2	to	both	sides	and	use	some	algebra	to	show	that	1	3	(4k3	−	k)	+	(2k	+	1)2	=	1	3	[4k3	+	12k2	+	11k	+	3]	=	1	3	[4(k	+	1)3	−	(k	+
1)],	which	establishes	the	case	n	=	k	+	1.	5.	Equality	holds	for	n	=	1	since	12	=	(−1)2(1	·	2)/2.	The	proof	is	completed	by	showing	(−1)k+1[k(k	+	1)]/2	+	(−1)k+2(k	+	1)2	=	(−1)k+2[(k	+	1)(k	+	2)]/2.	6.	If	n	=	1,	then	13	+	5	·	1	=	6	is	divisible	by	6.	If	k3	+	5k	is	divisible	by	6,	then	(k	+	1)3	+	5(k	+	1)	=	(k3	+	5k)	+	3k(k	+	1)	+	6	is	also,	because	k(k	+	1)
is	always	even	(why?)	so	that	3k(k	+	1)	is	divisible	by	6,	and	hence	the	sum	is	divisible	by	6.	7.	If	52k	−	1	is	divisible	by	8,	then	it	follows	that	52(k+1)	−	1	=	(52k	−	1)	+	24	·	52k	is	also	divisible	by	8.	8.	5k+1	−4(k	+1)−1=5·5k	−4k	−	5	=	(5k	−	4k	−	1)	+	4(5k	−	1).	Now	show	that	5k	−	1	is	always	divisible	by	4.	9.	If	k3	+	(k	+	1)3	+	(k	+	2)3	is	divisible
by	9,	then	(k	+	1)3	+	(k+2)3	+	(k	+	3)3	=	k3	+	(k	+	1)3	+	(k	+	2)3	+	9(k2	+	3k	+	3)	is	also	divisible	by	9.	10.	The	sum	is	equal	to	n/(2n	+	1).	6.	Chapter	1	—	Preliminaries	5	11.	The	sum	is	1	+	3	+	·	·	·	+	(2n	−	1)	=	n2.	Note	that	k2	+	(2k	+	1)	=	(k	+	1)2.	12.	If	n0	>	1,	let	S1	:=	{n	∈	N	:	n	−	n0	+	1	∈	S}	Apply	1.2.2	to	the	set	S1.	13.	If	k	<	2k,	then	k	+	1
<	2k	+	1	<	2k	+	2k	=	2(2k)	=	2k	+	1.	14.	If	n	=	4,	then	24	=	16	<	24	=	4!.	If	2k	<	k!	and	if	k	≥	4,	then	2k+1	=	2	·	2k	<	2	·	k!	<	(k	+	1)	·	k!	=	(k	+	1)!.	[Note	that	the	inductive	step	is	valid	when-	ever	2	<	k	+	1,	including	k	=	2,	3,	even	though	the	statement	is	false	for	these	values.]	15.	For	n	=	5	we	have	7	≤	23.	If	k	≥	5	and	2k	−	3	≤	2k−2,	then	2(k	+
1)	−	3	=	(2k	−	3)	+	2	≤	2k−2	+	2k−2	=	2(k	+	1)−2.	16.	It	is	true	for	n	=	1	and	n	≥	5,	but	false	for	n	=	2,	3,	4.	The	inequality	2k	+	1	<	2k,	wich	holds	for	k	≥	3,	is	needed	in	the	induction	argument.	[The	inductive	step	is	valid	for	n	=	3,	4	even	though	the	inequality	n2	<	2n	is	false	for	these	values.]	17.	m	=	6	trivially	divides	n3	−	n	for	n	=	1,	and	it	is
the	largest	integer	to	divide	23	−	2	=	6.	If	k3	−	k	is	divisible	by	6,	then	since	k2	+	k	is	even	(why?),	it	follows	that	(k	+	1)3	−	(k	+	1)	=	(k3	−	k)	+	3(k2	+	k)	is	also	divisible	by	6.	18.	√	k	+	1/	√	k	+	1	=	(	√	k	√	k	+	1	+	1)/	√	k	+	1	>	(k	+	1)/	√	k	+	1	=	√	k	+	1.	19.	First	note	that	since	2	∈	S,	then	the	number	1	=	2	−	1	belongs	to	S.	If	m	/∈	S,	then	m	<	2m	∈
S,	so	2m	−	1	∈	S,	etc.	20.	If	1	≤	xk−1	≤	2	and	1	≤	xk	≤	2,	then	2	≤	xk−1	+	xk	≤	4,	so	that	1	≤	xk	+	1	=	(xk−1	+	xk)/2	≤	2.	Section	1.3	Every	student	of	advanced	mathematics	needs	to	know	the	meaning	of	the	words	“finite”,	“infinite”,	“countable”	and	“uncountable”.	For	most	students	at	this	level	it	is	quite	enough	to	learn	the	definitions	and	read
the	statements	of	the	theorems	in	this	section,	but	to	skip	the	proofs.	Probably	every	instructor	will	want	to	show	that	Q	is	countable	and	R	is	uncountable	(see	Section	2.5).	Some	students	will	not	be	able	to	comprehend	that	proofs	are	necessary	for	“obvious”	statements	about	finite	sets.	Others	will	find	the	material	absolutely	fascinating	and	want	to
prolong	the	discussion	forever.	The	teacher	must	avoid	getting	bogged	down	in	a	protracted	discussion	of	cardinal	numbers.	Sample	Assignment:	Exercises	1,	5,	7,	9,	11.	Partial	Solutions:	1.	If	T1	=	∅	is	finite,	then	the	definition	of	a	finite	set	applies	to	T2	=	Nn	for	some	n.	If	f	is	a	bijection	of	T1	onto	T2,	and	if	g	is	a	bijection	of	T2	onto	Nn,	then	(by
Exercise	1.1.21)	the	composite	g	◦	f	is	a	bijection	of	T1	onto	Nn,	so	that	T1	is	finite.	7.	6	Bartle	and	Sherbert	2.	Part	(b)	Let	f	be	a	bijection	of	Nm	onto	A	and	let	C	=	{f(k)}	for	some	k	∈	Nm.	Define	g	on	Nm−1	by	g(i)	:=	f(i)	for	i	=	1,	.	.	.	,	k	−	1,	and	g(i)	:=	f(i	+	1)	for	i	=	k,	.	.	.	,	m	−	1.	Then	g	is	a	bijection	of	Nm−1	onto	AC.	(Why?)	Part	(c)	First	note
that	the	union	of	two	finite	sets	is	a	finite	set.	Now	note	that	if	C/B	were	finite,	then	C	=	B	∪	(C	B)	would	also	be	finite.	3.	(a)	The	element	1	can	be	mapped	into	any	of	the	three	elements	of	T,	and	2	can	then	be	mapped	into	any	of	the	two	remaining	elements	of	T,	after	which	the	element	3	can	be	mapped	into	only	one	element	of	T.	Hence	there	are	6
=	3	·	2	·	1	different	injections	of	S	into	T.	(b)	Suppose	a	maps	into	1.	If	b	also	maps	into	1,	then	c	must	map	into	2;	if	b	maps	into	2,	then	c	can	map	into	either	1	or	2.	Thus	there	are	3	surjections	that	map	a	into	1,	and	there	are	3	other	surjections	that	map	a	into	2.	4.	f(n)	:=	2n	+	13,	n	∈	N.	5.	f(1)	:=	0,	f(2n)	:=	n,	f(2n	+	1)	:=	−n	for	n	∈	N.	6.	The
bijection	of	Example	1.3.7(a)	is	one	example.	Another	is	the	shift	defined	by	f(n)	:=	n	+	1	that	maps	N	onto	N	{1}.	7.	If	T1	is	denumerable,	take	T2	=	N.	If	f	is	a	bijection	of	T1	onto	T2,	and	if	g	is	a	bijection	of	T2	onto	N,	then	(by	Exercise	1.1.21)	g	◦	f	is	a	bijection	of	T1	onto	N,	so	that	T1	is	denumerable.	8.	Let	An	:=	{n}	for	n	∈	N,	so	An	=	N.	9.	If	S∩T
=	∅	and	f	:	N	→	S,	g:	N	→	T	are	bijections	onto	S	and	T,	respectively,	let	h(n)	:=	f((n	+	1)/2)	if	n	is	odd	and	h(n)	:=	g(n/2)	if	n	is	even.	It	is	readily	seen	that	h	is	a	bijection	of	N	onto	S	∪	T;	hence	S	∪	T	is	denumerable.	What	if	S	∩	T	=	∅?	10.	(a)	m	+	n	−	1	=	9	and	m	=	6	imply	n	=	4.	Then	h(6,	4)	=	1	2	·	8	·	9	+	6	=	42.	(b)	h(m,	3)	=	1	2	(m	+	1)(m	+	2)	+
m	=	19,	so	that	m2	+	5m	−	36	=	0.	Thus	m	=	4.	11.	(a)	P({1,	2})	=	{∅,	{1},	{2},	{1,	2}}	has	22	=	4	elements.	(b)	P({1,	2,	3})	has	23	=	8	elements.	(c)	P({1,	2,	3,	4})	has	24	=	16	elements.	12.	Let	Sn+1	:=	{x1,	.	.	.	,	xn,	xn+1}	=	Sn	∪	{xn+1}	have	n	+	1	elements.	Then	a	subset	of	Sn+1	either	(i)	contains	xn+1,	or	(ii)	does	not	contain	xn+1.	The
induction	hypothesis	implies	that	there	are	2n	subsets	of	type	(i),	since	each	such	subset	is	the	union	of	{xn+1}	and	a	subset	of	Sn.	There	are	also	2n	subsets	of	type	(ii).	Thus	there	is	a	total	of	2n	+	2n	=	2	·	2n	=	2n	+	1	subsets	of	Sn+1.	13.	For	each	m	∈	N,	the	collection	of	all	subsets	of	Nm	is	finite.	(See	Exercise	12.)	Every	finite	subset	of	N	is	a
subset	of	Nm	for	a	sufficiently	large	m.	Therefore	Theorem	1.3.12	implies	that	F(N)	=	∞	m=1	P(Nm)	is	countable.	8.	CHAPTER	2	THE	REAL	NUMBERS	Students	will	be	familiar	with	much	of	the	factual	content	of	the	first	few	sections,	but	the	process	of	deducing	these	facts	from	a	basic	list	of	axioms	will	be	new	to	most	of	them.	The	ability	to
construct	proofs	usually	improves	gradually	during	the	course,	and	there	are	much	more	significant	topics	forthcoming.	A	few	selected	theorems	should	be	proved	in	detail,	since	some	experience	in	writing	formal	proofs	is	important	to	students	at	this	stage.	However,	one	should	not	spend	too	much	time	on	this	material.	Sections	2.3	and	2.4	on	the
Completeness	Property	form	the	heart	of	this	chapter.	These	sections	should	be	covered	thoroughly.	Also	the	Nested	Intervals	Property	in	Section	2.5	should	be	treated	carefully.	Section	2.1	One	goal	of	Section	2.1	is	to	acquaint	students	with	the	idea	of	deducing	conse-	quences	from	a	list	of	basic	axioms.	Students	who	have	not	encountered	this	type
of	formal	reasoning	may	be	somewhat	uncomfortable	at	first,	since	they	often	regard	these	results	as	“obvious”.	Since	there	is	much	more	to	come,	a	sampling	of	results	will	suffice	at	this	stage,	making	it	clear	that	it	is	only	a	sampling.	The	classic	proof	of	the	irrationality	of	√	2	should	certainly	be	included	in	the	discussion,	and	students	should	be
asked	to	modify	this	argument	for	√	3,	etc.	Sample	Assignment:	Exercises	1(a,b),	2(a,b),	3(a,b),	6,	13,	16(a,b),	20,	23.	Partial	Solutions:	1.	(a)	Apply	appropriate	algebraic	properties	to	get	b	=	0	+	b	=	(−a	+	a)	+	b	=	−a	+	(a	+	b)	=	−a	+	0	=	−a.	(b)	Apply	(a)	to	(−a)	+	a	=	0	with	b	=	a	to	conclude	that	a	=	−(−a).	(c)	Apply	(a)	to	the	equation	a	+	(−1)a
=	a(1	+	(−1))	=	a	·	0	=	0	to	conclude	that	(−1)a	=	−a.	(d)	Apply	(c)	with	a	=	−1	to	get	(−1)(−1)	=	−(−1).	Then	apply	(b)	with	a	=	1	to	get	(−1)(−1)	=	1.	2.	(a)	−(a	+	b)	=	(−1)(a	+	b)	=	(−1)a	+	(−1)b	=	(−a)	+	(−b).	(b)	(−a)	·	(−b)	=	((−1)a)	·	((−1)b)	=	(−1)(−1)(ab)	=	ab.	(c)	Note	that	(−a)(−(1/a))	=	a(1/a)	=	1.	(d)	−(a/b)	=	(−1)(a(1/b))	=	((−1)a)(1/b)	=
(−a)/b.	3.	(a)	Add	−5	to	both	sides	of	2x	+	5	=	8	and	use	(A2),(A4),(A3)	to	get	2x	=	3.	Then	multiply	both	sides	by	1/2	to	get	x	=	3/2.	(b)	Write	x2	−	2x	=	x(x	−	2)	=	0	and	apply	Theorem	2.1.3(b).	Alternatively,	note	that	x	=	0	satisfies	the	equation,	and	if	x	=	0,	then	multiplication	by	1/x	gives	x	=	2.	7	9.	8	Bartle	and	Sherbert	(c)	Add	−3	to	both	sides	and
factor	to	get	x2	−	4	=	(x	−	2)(x	+	2)	=	0.	Now	apply	2.1.3(b)	to	get	x	=	2	or	x	=	−2.	(d)	Apply	2.1.3(b)	to	show	that	(x	−	1)(x	+	2)	=	0	if	and	only	if	x	=	1	or	x	=	−2.	4.	Clearly	a	=	0	satisfies	a	·	a	=	a.	If	a	=	0	and	a	·	a	=	a,	then	(a	·	a)(1/a)	=	a(1/a),	so	that	a	=	a(a(1/a))	=	a(1/a)	=	1.	5.	If	(1/a)(1/b)	is	multiplied	by	ab,	the	result	is	1.	Therefore,	Theorem
2.1.3(a)	implies	that	1/(ab)	=	(1/a)(1/b).	6.	Note	that	if	q	∈	Z	and	if	3q2	is	even,	then	q2	is	even,	so	that	q	is	even.	Hence,	if	(p/q)2	=	6,	then	it	follows	that	p	is	even,	say	p	=	2m,	whence	2m2	=	3q2,	so	that	q	is	also	even.	7.	If	p	∈	N,	there	are	three	possibilities:	for	some	m	∈	N	∪	{0},	(i)	p	=	3m,	(ii)	p	=	3m	+	1,	or	(iii)	p	=	3m	+	2.	In	either	case	(ii)	or
(iii),	we	have	p2	=	3h	+	1	for	some	h	∈	N	∪	{0}.	8.	(a)	Let	x	=	m/n,	y	=	p/q,	where	m,	n	=	0,	p,	q	=	0	are	integers.	Then	x	+	y	=	(mq	+	np)/nq	and	xy	=	mp/nq	are	rational.	(b)	If	s	:=	x	+	y	∈	Q,	then	y	=	s	−	x	∈	Q,	a	contradiction.	If	t	:=	xy	∈	Q	and	x	=	0,	then	y	=	t/x	∈	Q,	a	contradiction.	9.	(a)	If	x1	=	s1	+	t1	√	2	and	x2	=	s2	+	t2	√	2	are	in	K,	then	x1	+
x2	=	(s1	+	s2)	+	(t1	+	t2)	√	2	and	x1x2	=	(s1s2	+	2t1t2)	+	(s1t2	+	s2t1)	√	2	are	also	in	K.	(b)	If	x	=	s	+	t	√	2	=	0	is	in	K,	then	s	−	t	√	2	=	0	(why?)	and	1	x	=	s	−	t	√	2	(s	+	t	√	2)(s	−	t	√	2)	=	s	s2	−	2t2	−	t	s2	−	2t2	√	2	is	in	K.	(Use	Theorem	2.1.4.)	10	(a)	If	c	=	d,	then	2.1.7(b)	implies	a	+	c	<	b	+	d.	If	c	<	d,	then	a	+	c	<	b	+	c	<	b	+	d.	(b)	If	c	=	d	=	0,
then	ac	=	bd	=	0.	If	c	>	0,	then	0	<	ac	by	the	Trichotomy	Property	and	ac	<	bc	follows	from	2.1.7(c).	If	also	c	≤	d,	then	ac	≤	ad	<	bd.	Thus	0	≤	ac	≤	bd	holds	in	all	cases.	11.	(a)	If	a	>	0,	then	a	=	0	by	the	Trichotomy	Property,	so	that	1/a	exists.	If	1/a	=	0,	then	1	=	a·(1/a)	=	a·0	=	0,	which	contradicts	(M3).	If	1/a	<	0,	then	2.1.7(c)	implies	that	1	=	a(1/a)
<	0,	which	contradicts	2.1.8(b).	Thus	1/a	>	0,	and	2.1.3(a)	implies	that	1/(1/a)	=	a.	(b)	If	a	<	b,	then	2a	=	a	+	a	<	a	+	b,	and	also	a	+	b	<	b	+	b	=	2b.	Therefore,	2a	<	a	+	b	<	2b,	which,	since	1	2	>	0	(by	2.1.8(c)	and	part	(a)),	implies	that	a	<	1	2	(a	+	b)	<	b.	12.	Let	a	=	1	and	b	=	2.	If	c	=	−3	and	d	=	−1,	then	ac	<	bd.	On	the	other	hand,	if	c	=	−3	and	d
=	−2,	then	bd	<	ac.	(Many	other	examples	are	possible.)	10.	Chapter	2	—	The	Real	Numbers	9	13.	If	a	=	0,	then	2.1.8(a)	implies	that	a2	>	0;	since	b2	≥	0,	it	follows	that	a2	+	b2	>	0.	14.	If	0	≤	a	<	b,	then	2.1.7(c)	implies	ab	<	b2.	If	a	=	0,	then	0	=	a2	=	ab	<	b2.	If	a	>	0,	then	a2	<	ab	by	2.1.7(c).	Thus	a2	≤	ab	<	b2.	If	a	=	0,	b	=	1,	then	0	=	a2	=	ab	<	b
=	1.	15.	(a)	If	0	<	a	<	b,	then	2.1.7(c)	implies	that	0	<	a2	<	ab	<	b2.	Then	by	Example	2.1.13(a),	we	infer	that	a	=	√	a2	<	√	ab	<	√	b2	=	b.	(b)	If	0	<	a	<	b,	then	ab	>	0	so	that	1/ab	>	0,	and	thus	1/a	−	1/b	=	(1/ab)(b	−	a)	>	0.	16.	(a)	To	solve	(x	−	4)(x	+	1)	>	0,	look	at	two	cases.	Case	1:	x	−	4	>	0	and	x	+	1	>	0,	which	gives	x	>	4.	Case	2:	x	−	4	<	0	and	x
+	1	<	0,	which	gives	x	<	−1.	Thus	we	have	{x	:	x	>	4	or	x	<	−1}.	(b)	1	<	x2	<	4	has	the	solution	set	{x	:	1	<	x	<	2	or	−	2	<	x	<	−1}.	(c)	The	inequality	is	1/x	−	x	=	(1	−	x)(1	+	x)/x	<	0.	If	x	>	0,	this	is	equiva-	lent	to	(1	−	x)(1	+	x)	<	0,	which	is	satisfied	if	x	>	1.	If	x	<	0,	then	we	solve	(1	−	x)(1	+	x)	>	0,	and	get	−1	<	x	<	0.	Thus	we	get	{x	:	−1	<	x	<	0
or	x	>	1}	(d)	the	solution	set	is	{x	:	x	<	0	or	x	>	1}.	17.	If	a	>	0,	we	can	take	ε0	:=	a	>	0	and	obtain	0	<	ε0	≤	a,	a	contradiction.	18.	If	b	<	a	and	if	ε0	:=	(a	−	b)/2,	then	ε0	>	0	and	a	=	b	+	2ε0	>	b	+	ε0.	19.	The	inequality	is	equivalent	to	0	≤	a2	−	2ab	+	b2	=	(a	−	b)2.	20.	(a)	If	0	<	c	<	1,	then	2.1.7(c)	implies	that	0	<	c2	<	c,	whence	0	<	c2	<	c	<	1.	(b)
Since	c	>	0,	then	2.1.7(c)	implies	that	c	<	c2,	whence	1	<	c	<	c2.	21.	(a)	Let	S	:=	{n	∈	N	:	0	<	n	<	1}.	If	S	is	not	empty,	the	Well-Ordering	Property	of	N	implies	there	is	a	least	element	m	in	S.	However,	0	<	m	<	1	implies	that	0	<	m2	<	m,	and	since	m2	is	also	in	S,	this	is	a	contradiction	to	the	fact	that	m	is	the	least	element	of	S.	(b)	If	n	=	2p	=	2q	−	1
for	some	p,	q	in	N,	then	2(q	−	p)	=	1,	so	that	0	<	q	−	p	<	1.	This	contradicts	(a).	22.	(a)	Let	x	:=	c	−	1	>	0	and	apply	Bernoulli’s	Inequality	2.1.13(c)	to	get	cn	=	(1	+	x)n	≥	1	+	nx	≥	1	+	x	=	c	for	all	n	∈	N,	and	cn	>	1	+	x	=	c	for	n	>	1.	(b)	Let	b	:=	1/c	and	use	part	(a).	23.	If	0	<	a	<	b	and	ak	<	bk,	then	2.1.7(c)	implies	that	ak	+	1	<	abk	<	bk	+	1	so
Induction	applies.	If	am	<	bm	for	some	m	∈	N,	the	hypothesis	that	0	<	b	≤	a	leads	to	a	contradiction.	24.	(a)	If	m	>	n,	then	k	:=	m	−	n	∈	N,	so	Exercise	22(a)	implies	that	ck	≥	c	>	1.	But	since	ck	=	cm	−	n,	this	implies	that	cm	>	cn.	Conversely,	the	hypothesis	that	cm	>	cn	and	m	≤	n	lead	to	a	contradiction.	(b)	Let	b	:=	1/c	and	use	part	(a).	11.	10
Bartle	and	Sherbert	25.	Let	b	:=	c1/mn.	We	claim	that	b	>	1;	for	if	b	≤	1,	then	Exercise	22(b)	implies	that	1	<	c	=	bmn	≤	b	≤	1,	a	contradiction.	Therefore	Exercise	24(a)	implies	that	c1/n	=	bm	>	bn	=	c1/m	if	and	only	if	m	>	n.	26.	Fix	m	∈	N	and	use	Mathematical	Induction	to	prove	that	am	+	n	=	aman	and	(am)n	=	amn	for	all	n	∈	N.	Then,	for	a	given
n	∈	N,	prove	that	the	equalities	are	valid	for	all	m	∈	N.	Section	2.2	The	notion	of	absolute	value	of	a	real	number	is	defined	in	terms	of	the	basic	order	properties	of	R.	We	have	put	it	in	a	separate	section	to	give	it	emphasis.	Many	students	need	extra	work	to	become	comfortable	with	manipulations	involving	absolute	values,	especially	when
inequalities	are	involved.	We	have	also	used	this	section	to	give	students	an	early	introduction	to	the	notion	of	the	ε-neighborhood	of	a	point.	As	a	preview	of	the	role	of	ε-neighborhoods,	we	have	recast	Theorem	2.1.9	in	terms	of	ε-neighborhhoods	in	Theorem	2.2.8.	Sample	Assignment:	Exercises	1,	4,	5,	6(a,b),	8(a,b),	9,	12(a,b),	15.	Partial	Solutions:	1.
(a)	If	a	≥	0,	then	|a|	=	a	=	√	a2;	if	a	<	0,	then	|a|	=	−a	=	√	a2.	(b)	It	suffices	to	show	that	|1/b|	=	1/|b|	for	b	=	0	(why?).	If	b	>	0,	then	1/b	>	0	(why?),	so	that	|1/b|	=	1/b	=	1/|b|.	If	b	<	0,	then	1/b	<	0,	so	that	|1/b|	=	−(1/b)	=	1/(−b)	=	1/|b|.	2.	First	show	that	ab	≥	0	if	an	only	if	|ab|	=	ab.	Then	show	that	(|a|	+	|b|)2	=	(a	+	b)2	if	and	only	if	|ab|	=	ab.	3.	If	x
≤	y	≤	z,	then	|x	−	y|	+	|y	−	z|	=	(y	−	x)	+	(z	−	y)	=	z	−	x	=	|z	−	x|.	To	establish	the	converse,	show	that	y	<	x	and	y	>	z	are	impossible.	For	example,	if	y	<	x	≤	z,	it	follows	from	what	we	have	shown	and	the	given	relationship	that	|x	−	y|	=	0,	so	that	y	=	x,	a	contradiction.	4.	|x	−	a|	<	ε	⇐⇒	−ε	<	x	−	a	<	ε	⇐⇒	a	−	ε	<	x	<	a	+	ε.	5.	If	a	<	x	<	b	and	−b	<
−y	<	−a,	it	follows	that	a	−	b	<	x	−	y	<	b	−	a.	Since	a	−	b	=	−(b	−	a),	the	argument	in	2.2.2(c)	gives	the	conclusion	|x	−	y|	<	b	−	a.	The	distance	between	x	and	y	is	less	than	or	equal	to	b	−	a.	6.	(a)	|4x	−	5|	≤	13	⇐⇒	−13	≤	4x	−	5	≤	13	⇐⇒	−8	≤	4x	≤	18	⇐⇒	−2	≤	x	≤	9/2.	(b)	|x2	−	1|	≤	3	⇐⇒	−3	≤	x2	−	1	≤	3	⇐⇒	−2	≤	x2	≤	4	⇐⇒	0	≤	x2	≤	4	⇐⇒	−2	≤	x
≤	2.	7.	Case	1:	x	≥	2	⇒	(x	+	1)	+	(x	−	2)	=	2x	−	1	=	7,	so	x	=	4.	Case	2:	−1	<	x	<	2	⇒	(x	+	1)	+	(2	−	x)	=	3	=	7,	so	no	solution.	Case	3:	x	≤	−1	⇒	(−x	−	1)	+	(2	−	x)	=	−2x	+	1	=	7,	so	x	=	−3.	Combining	these	cases,	we	get	x	=	4	or	x	=	−3.	12.	Chapter	2	—	The	Real	Numbers	11	8.	(a)	If	x	>	1/2,	then	x	+	1	=	2x	−	1,	so	that	x	=	2.	If	x	≤	1/2,	then	x	+	1	=
−2x	+	1,	so	that	x	=	0.	There	are	two	solutions	{0,	2}.	(b)	If	x	≥	5,	the	equation	implies	x	=	−4,	so	no	solutions.	If	x	<	5,	then	x	=	2.	9.	(a)	If	x	≥	2,	the	inequality	becomes	−2	≤	1.	If	x	≤	2,	the	inequality	is	x	≥	1/2,	so	this	case	contributes	1/2	≤	x	≤	2.	Combining	the	cases	gives	us	all	x	≥	1/2.	(b)	x	≥	0	yields	x	≤	1/2,	so	that	we	get	0	≤	x	≤	1/2.	x	≤	0
yields	x	≥	−1,	so	that	−1	≤	x	≤	0.	Combining	cases,	we	get	−1	≤	x	≤	1/2.	10.	(a)	Either	consider	the	three	cases:	x	<	−1,	−1	≤	x	≤	1	and	1	<	x;	or,	square	both	sides	to	get	−2x	>	2x.	Either	approach	gives	x	<	0.	(b)	Consider	the	three	cases	x	≥	0,	−	1	≤	x	<	0	and	x	<	−	1	to	get	−	3/2	<	x	<	1/2.	11.	y	=	f(x)	where	f(x)	:=	−1	for	x	<	0,	f(x)	:=	2x	−	1	for
0	≤	x	≤	1,	and	f(x)	:=	1	for	x	>	1.	12.	Case	1:	x	≥	1	⇒	4	<	(x	+	2)	+	(x	−	1)	<	5,	so	3/2	<	x	<	2.	Case	2:	−2	<	x	<	1	⇒	4	<	(x	+	2)	+	(1	−	x)	<	5,	so	there	is	no	solution.	Case	3:	x	<	−2	⇒	4	<	(−x	−	2)	+	(1	−	x)	<	5,	so	−3	<	x	<	−5/2.	Thus	the	solution	set	is	{x	:	−3	<	x	<	−5/2	or	3/2	<	x	<	2}.	13.	|2x	−	3|	<	5	⇐⇒	−1	<	x	<	4,	and	|x	+	1|	>	2	⇐⇒	x	<	−3	or
x	>	1.	The	two	inequalities	are	satisfied	simultaneously	by	points	in	the	intersection	{x	:	1	<	x	<	4}.	14.	(a)	|x|	=	|y|	⇐⇒	x2	=	y2	⇐⇒	(x	−	y)(x	+	y)	=	0	⇐⇒	y	=	x	or	y	=	−x.	Thus	{(x,	y)	:	y	=	x	or	y	=	−x}.	(b)	Consider	four	cases.	If	x	≥	0,	y	≥	0,	we	get	the	line	segment	joining	the	points	(0,	1)	and	(1,	0).	If	x	≤	0,	y	≥	0,	we	get	the	line	segment	joining	(−1,
0)	and	(0,	1),	and	so	on.	(c)	The	hyperbolas	y	=	2/x	and	y	=	−2/x.	(d)	Consider	four	cases	corresponding	to	the	four	quadrants.	The	graph	consists	of	a	portion	of	a	line	segment	in	each	quadrant.	For	example,	if	x	≥	0,	y	≥	0,	we	obtain	the	portion	of	the	line	y	=	x	−	2	in	this	quadrant.	15.	(a)	If	y	≥	0,	then	−y	≤	x	≤	y	and	we	get	the	region	in	the	upper
half-plane	on	or	between	the	lines	y	=	x	and	y	=	−x.	If	y	≤	0,	then	we	get	the	region	in	the	lower	half-plane	on	or	between	the	lines	y	=	x	and	y	=	−x.	(b)	This	is	the	region	on	and	inside	the	diamond	with	vertices	(1,	0),	(0,	1),	(−1,	0)	and	(0,	−1).	16.	For	the	intersection,	let	γ	be	the	smaller	of	ε	and	δ.	For	the	union,	let	γ	be	the	larger	of	ε	and	δ.	17.
Choose	any	ε	>	0	such	that	ε	<	|a	−	b|.	18.	(a)	If	a	≤	b,	then	max{a,	b}	=	b	=	1	2	[a	+	b	+	(b	−	a)]	and	min{a,	b}	=	a	=	1	2	[a	+	b	−	(b	−	a)].	(b)	If	a	=	min	{a,	b,	c},	then	min{min{a,	b},	c}	=	a	=	min{a,	b,	c}.	Similarly,	if	b	or	c	is	min{a,	b,	c}.	13.	12	Bartle	and	Sherbert	19.	If	a	≤	b	≤	c,	then	mid{a,	b,	c}	=	b	=	min{b,	c,	c}	=	min{max{a,	b},	max{b,
c},	max{c,	a}}.	The	other	cases	are	similar.	Section	2.3	This	section	completes	the	description	of	the	real	number	system	by	introducing	the	fundamental	completeness	property	in	the	form	of	the	Supremum	Property.	This	property	is	vital	to	real	analysis	and	students	should	attain	a	working	under-	standing	of	it.	Effort	expended	in	this	section	and	the
one	following	will	be	richly	rewarded	later.	Sample	Assignment:	Exercises	1,	2,	5,	6,	9,	10,	12,	14.	Partial	Solutions:	1.	Any	negative	number	or	0	is	a	lower	bound.	For	any	x	≥	0,	the	larger	number	x	+	1	is	in	S1,	so	that	x	is	not	an	upper	bound	of	S1.	Since	0	≤	x	for	all	x	∈	S1,	then	u	=	0	is	a	lower	bound	of	S1.	If	v	>	0,	then	v	is	not	a	lower	bound	of	S1
because	v/2	∈	S1	and	v/2	<	v.	Therefore	inf	S1	=	0.	2.	S2	has	lower	bounds,	so	that	inf	S2	exists.	The	argument	used	for	S1	also	shows	that	inf	S2	=	0,	but	that	inf	S2	does	not	belong	to	S2.	S2	does	not	have	upper	bounds,	so	that	sup	S2	does	not	exists.	3.	Since	1/n	≤	1	for	all	n	∈	N,	then	1	is	an	upper	bound	for	S3.	But	1	is	a	member	of	S3,	so	that	1	=
sup	S3.	(See	Exercise	7	below.)	4.	sup	S4	=	2	and	inf	S4	=	1/2.	(Note	that	both	are	members	of	S4.)	5.	It	is	interesting	to	compare	algebraic	and	geometric	approaches	to	these	problems.	(a)	inf	A	=	−5/2,	sup	A	does	not	exist,	(b)	sup	B	=	2,	inf	B	=	−1,	(c)	sup	C	=	1,	inf	B	does	not	exist,	(d)	sup	D	=	1	+	√	6,	inf	D	=	1	−	√	6.	6.	If	S	is	bounded	below,	then
S	:=	{−s	:	s	∈	S}	is	bounded	above,	so	that	u	:=	sup	S	exists.	If	v	≤	s	for	all	s	∈	S,	then	−v	≥	−s	for	all	s	∈	S,	so	that	−v	≥	u,	and	hence	v	≤	−u.	Thus	inf	S	=	−u.	7.	Let	u	∈	S	be	an	upper	bound	of	S.	If	v	is	another	upper	bound	of	S,	then	u	≤	v.	Hence	u	=	sup	S.	8.	If	t	>	u	and	t	∈	S,	then	u	is	not	an	upper	bound	of	S.	9.	Let	u	:=	sup	S.	Since	u	is	an	upper
bound	of	S,	so	is	u	+	1/n	for	all	n	∈	N.	Since	u	is	the	supremum	of	S	and	u	−	1/n	<	u,	then	there	exists	s0	∈	S	with	u	−	1/n	<	s0,	whence	u	−	1/n	is	not	an	upper	bound	of	S.	10.	Let	u	:=	sup	A,	v	:=	sup	B	and	w	:=	sup{u,	v}.	Then	w	is	an	upper	bound	of	A	∪	B,	because	if	x	∈	A,	then	x	≤	u	≤	w,	and	if	x	∈	B,	then	x	≤	v	≤	w.	If	z	is	14.	Chapter	2	—	The
Real	Numbers	13	any	upper	bound	of	A	∪	B,	then	z	is	an	upper	bound	of	A	and	of	B,	so	that	u	≤	z	and	v	≤	z.	Hence	w	≤	z.	Therefore,	w	=	sup(A	∪	B).	11.	Since	sup	S	is	an	upper	bound	of	S,	it	is	an	upper	bound	of	S0,	and	hence	sup	S0	≤	sup	S.	12.	Consider	two	cases.	If	u	≥	s∗,	then	u	=	sup(S	∪	{u}).	If	u	<	s∗,	then	there	exists	s	∈	S	such	that	u	<	s	≤
s∗,	so	that	s∗	=	sup(S	∪	{u}).	13.	If	S1	:=	{x1},	show	that	x1	=	sup	S1.	If	Sk	:=	{x1,	.	.	.	,	xk}	is	such	that	sup	Sk	∈	Sk,	then	preceding	exercise	implies	that	sup{x1,	.	.	.	,	xk,	xk	+	1}	is	the	larger	of	sup	Sk	and	xk	+	1	and	so	is	in	Sk	+	1.	14.	If	w	=	inf	S	and	ε	>	0,	then	w	+	ε	is	not	a	lower	bound	so	that	there	exists	t	in	S	such	that	t	<	w	+	ε.	If	w	is	a
lower	bound	of	S	that	satisfies	the	stated	condition,	and	if	z	>	w,	let	ε	=	z	−	w	>	0.	Then	there	is	t	in	S	such	that	t	<	w	+	ε	=	z,	so	that	z	is	not	a	lower	bound	of	S.	Thus,	w	=	inf	S.	Section	2.4	This	section	exhibits	how	the	supremum	is	used	in	practice,	and	contains	some	important	properties	of	R	that	will	often	be	used	later.	The	Archimedean	Proper-
ties	2.4.3–2.4.6	and	the	Density	Properties	2.4.8	and	2.4.9	are	the	most	significant.	The	exercises	also	contain	some	results	that	will	be	used	later.	Sample	Assignment:	Exercises	1,	2,	4(b),	5,	7,	10,	12,	13,	14.	Partial	Solutions:	1.	Since	1	−	1/n	<	1	for	all	n	∈	N,	the	number	1	is	an	upper	bound.	To	show	that	1	is	the	supremum,	it	must	be	shown	that	for
each	ε	>	0	there	exists	n	∈	N	such	that	1	−	1/n	>	1	−	ε,	which	is	equivalent	to	1/n	<	ε.	Apply	the	Archimedean	Property	2.4.3	or	2.4.5.	2.	inf	S	=	−1	and	sup	S	=	1.	To	see	the	latter	note	that	1/n	−	1/m	≤	1	for	all	m,	n	∈	N.	On	the	other	hand	if	ε	>	0	there	exists	m	∈	N	such	that	1/m	<	ε,	so	that	1/1	−	1/m	>	1	−	ε.	3.	Suppose	that	u	∈	R	is	not	the
supremum	of	S.	Then	either	(i)	u	is	not	an	upper	bound	of	S	(so	that	there	exists	s1	∈	S	with	u	<	s1,	whence	we	take	n	∈	N	with	1/n	<	s1	−	u	to	show	that	u	+	1/n	is	not	an	upper	bound	of	S),	or	(ii)	there	exists	an	upper	bound	u1	of	S	with	u1	<	u	(in	which	case	we	take	1/n	<	u	−	u1	to	show	that	u	−	1/n	is	not	an	upper	bound	of	S).	4.	(a)	Let	u	:=	sup	S
and	a	>	0.	Then	x	≤	u	for	all	x	∈	S,	whence	ax	≤	au	for	all	x	∈	S,	whence	it	follows	that	au	is	an	upper	bound	of	aS.	If	v	is	another	upper	bound	of	aS,	then	ax	≤	v	for	all	x	∈	S,	whence	x	≤	v/a	for	all	x	∈	S,	showing	that	v/a	is	an	upper	bound	for	S	so	that	u	≤	v/a,	from	which	we	conclude	that	au	≤	v.	Therefore	au	=	sup(aS).	The	statement	about	the
infimum	is	proved	similarly.	15.	14	Bartle	and	Sherbert	(b)	Let	u	:=	sup	S	and	b	<	0.	If	x	∈	S,	then	(since	b	<	0)	bu	≤	bx	so	that	bu	is	a	lower	bound	of	bS.	If	v	≤	bx	for	all	x	∈	S,	then	x	≤	v/b	(since	b	<	0),	so	that	v/b	is	an	upper	bound	for	S.	Hence	u	≤	v/b	whence	v	≤	bu.	Therefore	bu	=	inf(bS).	5.	If	x	∈	S,	then	0	≤	x	≤	u,	so	that	x2	≤	u2	which	implies
sup	T	≤	u2.	If	t	is	any	upper	bound	of	T,	then	x	∈	S	implies	x2	≤	t	so	that	x	≤	√	t.	It	follows	that	u	≤	√	t,	so	that	u2	≤	t.	Thus	u2	≤	sup	T.	6.	Let	u	:=	sup	f(X).	Then	f(x)	≤	u	for	all	x	∈	X,	so	that	a	+	f(x)	≤	a	+	u	for	all	x	∈	X,	whence	sup{a	+	f(x)	:	x	∈	X}	≤	a	+	u.	If	w	<	a	+	u,	then	w	−	a	<	u,	so	that	there	exists	xw	∈	X	with	w	−	a	<	f(xw),	whence	w	<	a	+
f(xw),	and	thus	w	is	not	an	upper	bound	for	{a	+	f(x)	:	x	∈	X}.	7.	Let	u	:=	sup	S,	v	:=	sup	B,	w	:=	sup(A	+	B).	If	x	∈	A	and	y	∈	B,	then	x	+	y	≤	u	+	v,	so	that	w	≤	u	+	v.	Now,	fix	y	∈	B	and	note	that	x	≤	w	−	y	for	all	x	∈	A;	thus	w	−	y	is	an	upper	bound	for	A	so	that	u	≤	w	−	y.	Then	y	≤	w	−	u	for	all	y	∈	B,	so	v	≤	w	−	u	and	hence	u	+	v	≤	w.	Combining
these	inequalities,	we	have	w	=	u	+	v.	8.	If	u	:=	sup	f(X)	and	v	:=	sup	g(X),	then	f(x)	≤	u	and	g(x)	≤	v	for	all	x	∈	X,	whence	f(x)	+	g(x)	≤	u	+	v	for	all	x	∈	X.	Thus	u	+	v	is	an	upper	bound	for	the	set	{f(x)	+	g(x)	:	x	∈	X}.	Therefore	sup{f(x)	+	g(x)	:	x	∈	X}	≤	u	+	v.	9.	(a)	f(x)	=	2x	+	1,	inf{f(x)	:	x	∈	X}	=	1.	(b)	g(y)	=	y,	sup{g(y)	:	y	∈	Y	}	=	1.	10.	(a)	f(x)	=	1
for	x	∈	X.	(b)	g(y)	=	0	for	y	∈	Y	.	11.	If	x	∈	X,	y	∈	Y	,	then	g(y)	≤	h(x,	y)	≤	f(x).	If	we	fix	y	∈	Y	and	take	the	infimum	over	x	∈	X,	then	we	get	g(y)	≤	inf{f(x)	:	x	∈	X}	for	each	y	∈	Y	.	Now	take	the	supremum	over	y	∈	Y	.	12.	Let	S	:=	{h(x,	y)	:	x	∈	X,	y	∈	Y	}.	We	have	h(x,	y)	≤	F(x)	for	all	x	∈	X,	y	∈	Y	so	that	sup	S	≤	sup{F(x)	:	x	∈	X}.	If	w	<	sup{F(x)	:	x	∈	X},
then	there	exists	x0	∈	X	with	w	<	F(x0)	=	sup	{h(x0,	y)	:	y	∈	Y	},	whence	there	exists	y0	∈	Y	with	w	<	h(x0,	y0).	Thus	w	is	not	an	upper	bound	of	S,	and	so	w	<	sup	S.	Since	this	is	true	for	any	w	such	that	w	<	sup{F(x)	:	x	∈	X},	we	conclude	that	sup{F(x)	:	x	∈	X}	≤	sup	S.	13.	If	x	∈	Z,	take	n	:=	x	+	1.	If	x	/∈	Z,	we	have	two	cases:	(i)	x	>	0	(which	is
covered	by	Cor.	2.4.6),	and	(ii)	x	<	0.	In	case	(ii),	let	z	:=	−x	and	use	2.4.6.	If	n1	<	n2	are	integers,	then	n1	≤	n2	−	1	so	the	sets	{y	:	n1	−	1	≤	y	<	n1}	and	{y	:	n2	−	1	≤	y	<	n2}	are	disjoint;	thus	the	integer	n	such	that	n	−	1	≤	x	<	n	is	unique.	14.	Note	that	n	<	2n	(whence	1/2n	<	1/n)	for	any	n	∈	N.	15.	Let	S3	:=	{s	∈	R	:	0	≤	s,	s2	<	3}.	Show	that	S3	is
nonempty	and	bounded	by	3	and	let	y	:=	sup	S3.	If	y2	<	3	and	1/n	<	(3	−	y2)/(2y	+	1)	show	that	16.	Chapter	2	—	The	Real	Numbers	15	y	+	1/n	∈	S3.	If	y2	>	3	and	1/m	<	(y2	−	3)/2y	show	that	y	−	1/m	∈	S3.	Therefore	y2	=	3.	16.	Case	1:	If	a	>	1,	let	Sa	:=	{s	∈	R	:	0	≤	s,	s2	<	a}.	Show	that	Sa	is	nonempty	and	bounded	above	by	a	and	let	z	:=	sup	Sa.
Now	show	that	z2	=	a.	Case	2:	If	0	<	a	<	1,	there	exists	k	∈	N	such	that	k2a	>	1	(why?).	If	z2	=	k2a,	then	(z/k)2	=	a.	17.	Consider	T	:=	{t	∈	R	:	0	≤	t,	t3	<	2}.	If	t	>	2,	then	t3	>	2	so	that	t	/∈	T.	Hence	y	:=	sup	T	exists.	If	y3	<	2,	choose	1/n	<	(2	−	y3)/(3y2	+	3y	+	1)	and	show	that	(y	+	1/n)3	<	2,	a	contradiction,	and	so	on.	18.	If	x	<	0	<	y,	then	we	can
take	r	=	0.	If	x	<	y	<	0,	we	apply	2.4.8	to	obtain	a	rational	number	between	−y	and	−x.	19.	There	exists	r	∈	Q	such	that	x/u	<	r	<	y/u.	Section	2.5	Another	important	consequence	of	the	Supremum	Property	of	R	is	the	Nested	Intervals	Property	2.5.2.	It	is	an	interesting	fact	that	if	we	assume	the	validity	of	both	the	Archimedean	Property	2.4.3	and	the
Nested	Intervals	Property,	then	we	can	prove	the	Supremum	Property.	Hence	these	two	properties	could	be	taken	as	the	completeness	axiom	for	R.	However,	establishing	this	logical	equivalence	would	consume	valuable	time	and	not	significantly	advance	the	study	of	real	anal-	ysis,	so	we	will	not	do	so.	(There	are	other	properties	that	could	be	taken
as	the	completeness	axiom.)	The	discussion	of	binary	and	decimal	representations	is	included	to	give	the	student	a	concrete	illustration	of	the	rather	abstract	ideas	developed	to	this	point.	However,	this	material	is	not	vital	for	what	follows	and	can	be	omitted	or	treated	lightly.	We	have	kept	this	discussion	informal	to	avoid	getting	buried	in	technical
details	that	are	not	central	to	the	course.	Sample	Assignment:	Exercises	3,	4,	5,	6,	7,	8,	10,	11.	Partial	Solutions:	1.	Note	that	[a,	b]	⊆	[a	,	b	]	if	and	only	if	a	≤	a	≤	b	≤	b	.	2.	S	has	an	upper	bound	b	and	a	lower	bound	a	if	and	only	if	S	is	contained	in	the	interval	[a,	b].	3.	Since	inf	S	is	a	lower	bound	for	S	and	sup	S	is	an	upper	bound	for	S,	then	S	⊆	IS.
Moreover,	if	S	⊆	[a,	b],	then	a	is	a	lower	bound	for	S	and	b	is	an	upper	bound	for	S,	so	that	[a,	b]	⊇	IS.	4.	Because	z	is	neither	a	lower	bound	or	an	upper	bound	of	S.	5.	If	z	∈	R,	then	z	is	not	a	lower	bound	of	S	so	there	exists	xz	∈	S	such	that	xz	≤	z.	Also	z	is	not	an	upper	bound	of	S	so	there	exists	yz	∈	S	such	that	z	≤	yz.	Since	z	belongs	to	[xz,	yz],	it
follows	from	the	property	(1)	that	z	∈	S.	Introduction	to	Real	Analysis	4th	Edition	Bartle	Solutions	Manual	Full	Download:	This	sample	only,	Download	all	chapters	at:	alibabadownload.com
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