I'm not robot	
	reCAPTCHA

Continue

Introduction to real analysis bartle 3rd edition solutions manual pdf

Introduction to Real Analysis is a comprehensive book for undergraduate students of Mathematics. The book comprises chapters on preliminaries, the real numbers, sequences and states, limits, continuous functions, differentiation, infinite series, and the generalized Reimann Integral. In addition, the book consists of several chapterwise problems to understand the concepts better. This book is essential for students who aspire to learn the basic concepts and techniques of real analysis. About Wiley India Pvt. Ltd. Wiley Ind

reference works, and are also into certification and training services, and online applications among many other things. Wiley India Pvt. Ltd. is published under their banner are Principles of Physics, Operating System Principles, Calculus, An Introduction to Probability and Statistics, and Gravitation and Cosmology. By: Jiří Lebl (website #1 (personal), website #2 (work: OSU), email:) Jump to: [Download the book (volume I) on Amazon] [Web version] [Search] This free online textbook (OER more formally) is a course in undergraduate real analysis (somewhere it is called "advanced calculus"). The book is meant both for a basic course for students who do not necessarily wish to go to graduate school, but also as a more advanced course that also covers topics such as metric spaces and should prepare students for graduate study. A prerequisite for the course is a basic proof course. An advanced course could be two semesters long with some of the second-semester topics such as multivariable differential calculus, path integrals, and the multivariable integral using the second volume. There are more topics than can be covered in two semesters, and it can also be reading for beginning graduate students to refresh their analysis or fill in some of the holes. This book started its life as my lecture notes for Math 444 at the University of Illinois at Urbana-Champaign (UIUC) in the fall semester of 2009. It was later enhanced to teach the Math 521/522 sequence at University of Wisconsin-Madison (UW-Madison) and the Math 4143/4153 sequence at Oklahoma State University (OSU) The book (volume I) starts with analysis on the real line, going through sequences, series, and then into continuity, the derivative, and the Riemann integral using the Darboux approach. There are plenty of available detours along the way, or we can power through towards the metric spaces in chapter 7. The philosophy is that metric spaces are absorbed much better by the students after they have gotten comfortable with basic analysis techniques in the very concrete setting of the real line. As a bonus, the book can be used both by a slower-paced, less abstract course, and a faster-paced more abstract course for future graduate students. The slower course never reaches metric spaces. A nice capstone theorem for such a course is the Picard theorem on existence and uniqueness of ordinary differential equations, a proof which brings together everything one has learned in the course. A faster-paced course would generally reach metric spaces, and as a reward such students can see a streamlined (but more abstract) proof of Picard. Volume II continues into multivariable analysis. Starting with differential calculus, including inverse and implicit function theorems, continuing with differentiation under the integral. Finally, there is also a chapter on power series, Arzelà-Ascoli, Stone-Weierstrass, and Fourier series. Together the two volumes provide enough material for several different types of year-long sequences. A student who absorbs the first three chapters of volume II should be more than prepared for graduate real and complex analysis courses. I have tried (especially in recent editions) to add many diagrams and graphs to graphically illustrate the proofs and make them more accessible. Usually, these are precise and more in-depth versions of the drawings I attempt on the board in class. Together, the two volumes have over a hundred figures. The aim is to provide a low cost, redistributable, not overly long, high-quality textbook that students will actually keep rather than selling back after the semester is over. Even if the students throw it out, they can always look it up on the net again. You are free to have a local bookstore or copy store make and sell copies for your students. See below about the license. One reason for making the book freely available is to allow modification and customization for a specific purpose if necessary (as the University of Pittsburgh has done for example). If you do modify this book, make sure to mark them prominently as such to avoid confusion. This aspect is also important for the longevity of the book. The book can be updated and modified even if I happen to drop off the face of the earth. You do not have to depend on any publisher being interested as with traditional textbooks. Furthermore, errata are fixed promptly, meaning that if you teach the same class next term, all errata that are spotted are most likely already fixed. No need to wait several years for a new addition. Every once in a white I make minor version updates (like a corrected printing) usually once or twice a year, depending on numbers are preserved as modified even if I have made and modified even if I happen to drop off the face of the earth. You do not have to depend and modified even if I happen to drop off the face of the earth. You do not have to depend and modified even if I happen to drop off the face of the earth. You do not have to depend and modified even if I happen to drop off the face of the earth. You do not have to depend and modified even if I happen to drop off the face of the earth. You do not have to depend and not have a depend and not have the face of the earth. You do not have the face of the earth. You do not have the face of the earth. You do not have the face of the earth and the earth compatible even if students (or the instructor) have an older printed copy. The minor updates are totally interchangeable and have very minimal changes, essentially not version for the book (they looked at the December 2012 edition of Volume I, there was only the first volume then). Table of contents: Introduction 1. Real Numbers 2. Sequences and Series 3. Continuous Functions 4. The Derivatives 9. One Dimensional Integrals in Several Variables 10. Multivariable Integral 11. Functions as Limits There are 528 exercises and 65 figures in Volume I (version 5.4, that is, June 8th 2021 edition). There are 263 exercises and 43 figures in Volume II (version 2.4, that is, June 8th 2021 edition). Please let me know at if you find any typos or have corrections, extra exercises or material, or any other comments. There is no solutions manual for the exercises. This situation is intentional. There is an unfortunately large number of problems with solutions out there already. Part of learning how to do proofs is to learn how to recognize your proof. It is like going the gym and watching other people work of the student comes up with Aller and the book at the one that the student comes up with Aller and Schole Interview of the book at the one that the student comes up with Aller and Schole Interview of the book at the one that the student comes up with Aller and Schole Interview of the book at the one that the student comes up with Aller and Schole Interview of the book at the one that the student comes up with Aller and Schole Interview of the book at the one that the student comes up with Aller and Schole Interview of the book at the one that the student comes up with Aller and Schole Interview of the book at the one that the student comes up with Aller and Schole Interview of the book at the one that the student comes up with Aller and Schole Interview of the book at the one that the student comes up with Aller and Schole Interview of the book at the one that the student comes up to the student comes up to the student com use the book for teaching a course! The book was used, or is being used, as the primary textbook at (other than my courses at UIUC, UCSD, UW-Madison, and OSU) University, Western Illinois University, Medgar Evers College, San Diego State University, University of Toledo, Oregon Institute of Technology, Iowa State University, University of New Brunswick Saint John, and many others. See below for a more complete list. The book has been selected as an Approved Textbook in the American Institute of Mathematics Open Textbook Initiative. See a list of classroom adoptions for more details. Download: Download the volume II of the book as PDF (Version 2.4, June 8th, 2021, 195 pages, 1.4 MB download) Check for any errata (volume I) (volume II) in the current version. Look at the change log (volume I) (volume II) to see what changed in the newest version. I started number is the major number and it really means "edition" and will be raised when substantial changes are made. The second number is raised for corrections only. Buy paperback: I get a bit of money when you buy these (depending on where exactly they are bought). Probably enough to buy me a coffee (as long as it is not a fancy coffee), so by buying a copy you will support this project. You will also save your toner cartridge. Lulu always has the most up to date version more quickly than amazon, the difference is usually in terms of days or weeks. The paperback copy is on Crown Quatro size (7.44x9.68 inch), and the two versions of it (amazon and lulu) are essentially identical except for cover art (there are those who like the blue). I tested both and they both print quite well, so the quality is approximately the same, and I have seen some of them take quite a bit of beating by students. Lulu also allows me to make a larger (US letter size) coil bound version which I prefer to get when teaching, as it can easily be opened and kept on a certain page. It may be easier to read, and take notes in as it has larger font and wider margins, though a little less portable. It's only a few dollars more. Volume I: Buy the smaller paperback copy at lulu.com for \$13.20. Or buy the larger coil-bound copy at lulu.com for \$13.20. This copy is the version 5.4 (June 8th, 2021) revision of volume I. ISBN-13: 978-1718862401 ISBN-10: 1718862407 Volume II: Buy the smaller paperback copy at lulu.com for \$12.47. This copy is the version 2.4 (June 8th, 2021) revision of volume II. No ISBN for the lulu version. Buy the smaller paperback copy on Amazon for \$11.00. This copy is the version 2.4 (June 8th, 2021) revision of volume II. ISBN-13: 978-1718865488 ISBN-10: 1718865488 ISBN-10: 1718865481 Web version is the authoritative copy, and will print far better. Search: Search the web version (Google puts in a bunch of ads at the top of every search, unfortunately, can't get rid of that): Source: The source is hosted on GitHub: (both volumes). You can get an archive of the released version on github, look under thought if you plan to work with it, may be fest to look at just the latest working version as that might have errata fixed or new additions. On the other hand, this might be a work in progress. Just ask me if unsure. Volume I is realanal.tex those are the "driver flies" text is in separate fles for each chapter). I compile the pif with pdflatex. You need to compile the first volume. First peffore the second volume. You might have the real real possible and an apublish25. As in the real possible and an apublish25. As in the real possible and publish25. As in the possible and publish25. As in the real possible and publish25. As in the possible a might be a work in progress. Just ask me if unsure. Volume I is realanal.tex and volume II is realanal2.tex (those are the "driver files" text is in separate files for each chapter). I compile the first volume first before the second volume. You might need to run makeindex (for the index) and makeglossary (for the This shows that $A \cap (B \cup C)$ is a subset of $(A \cap B) \cup (A \cap C)$. Since the sets $A \cap (B \cup C)$ is a subset of $(A \cap B) \cup (A \cap C)$. The either $(A \cap B) \cup (A \cap C)$. It follows that $y \in A$ and $x \in B$. The either $(A \cap B) \cup (A \cap C)$. The either $(A \cap B) \cup (A \cap C)$ is a subset of $(A \cap B) \cup (A \cap C)$. The either $(A \cap B) \cup (A \cap C)$ is a subset of $(A \cap B) \cup (A \cap C)$. The either $(A \cap B) \cup (A \cap C)$ is a subset of $(A \cap B) \cup (A \cap C)$. The either $(A \cap B) \cup (A \cap C)$ is a subset of $(A \cap B) \cup (A \cap C)$. The either $(A \cap B) \cup (A \cap C)$ is a subset of $(A \cap B) \cup (A \cap C)$. The either $(A \cap B) \cup (A \cap C)$ is a subset of $(A \cap B) \cup (A \cap C)$. The either $(A \cap B) \cup (A \cap C)$ is a subset of $(A \cap B) \cup (A \cap C)$. The either $(A \cap B) \cup (A \cap C)$ is a subset of $(A \cap B) \cup (A \cap C)$. The either $(A \cap B) \cup (A \cap C)$ is a subset of $(A \cap B) \cup (A \cap C)$. The either $(A \cap B) \cup (A \cap C)$ is a subset of $(A \cap B) \cup (A \cap C)$. The either $(A \cap B) \cup (A \cap C)$ is a subset of $(A \cap B) \cup (A \cap C)$. The either $(A \cap B) \cup (A \cap C)$ is a subset of $(A \cap B) \cup (A \cap C)$. The either $(A \cap B) \cup (A \cap C)$ is a subset of $(A \cap B) \cup (A \cap C)$. The either $(A \cap B) \cup (A \cap C)$ is a subset of $(A \cap B) \cup (A \cap C)$. The either $(A \cap B) \cup (A \cap C)$ is a subset of $(A \cap B) \cup (A \cap C)$. The either $(A \cap B) \cup (A \cap C)$ is a subset of $(A \cap B) \cup (A \cap C)$. The either $(A \cap B) \cup (A \cap C)$ is a subset of $(A \cap B) \cup (A \cap C)$. The either $(A \cap B) \cup (A \cap C)$ is a subset of $(A \cap B) \cup (A \cap C)$ is a subset of $(A \cap B) \cup (A \cap C)$. The either $(A \cap B) \cup (A \cap C)$ is a subset of $(A \cap B) \cup (A \cap C)$ is a subset of $(A \cap B) \cup (A \cap C)$. The either $(A \cap B) \cup (A \cap C)$ is a subset of $(A \cap C) \cup (A \cap C)$ is a subset of $(A \cap C) \cup (A \cap C)$ is a subset of $(A \cap C) \cup (A \cap C)$. The either $(A \cap C) \cup (A \cap C)$ is a subset of $(A \cap C) \cup (A \cap C)$ is a subset of $(A \cap C) \cup (A \cap C)$ is a subset of $(A \cap C) \cup (A \cap C)$. The either $(A \cap C) \cup (A \cap C)$ is a subset of $(A \cap C) \cup (A \cap C)$ is a subset of $(A \cap C) \cup (A \cap C)$ is a subset of $(A \cap C) \cup (A \cap C)$ is a subset of $(A \cap C) \cup (A \cap C)$ is a subset of $(A \cap C) \cup$ injective. If -1 < y < 1, then x := y/1 - y2 satisfies f(x) = y (why?), so that f takes R onto the set $\{y : -1 < y < 1\}$. If x > 0, then $x = \sqrt{x^2 + 1}$, so it follows that $f(x) \in \{y : 0 < y < 1\}$. 17. One bijection is the familiar linear function that maps a to 0 and b to 1, namely, f(x) := (x - a)/(b - a). Show that this function works. 18. (a) Let f(x) = 2x, g(x) = 2x, g= 3x. (b) Let f(x) = x2, g(x) = x, h(x) = 1. (Many examples are possible.) 19. (a) If $x \in f-1(f(E))$, then $f(x) \in f(E)$, so that there exists $x1 \in E$ such that f(x1) = f(x). If f is injective, then x1 = x, whence $x \in E$. Therefore, $f-1(f(E)) \subseteq E$. Since f(x) = f(x). If f is injective, then f(x) = f(x). If f is injective, then f(x) = f(x). If f is injective, then f(x) = f(x). H and f is surjective, then there exists $x \in A$ such that f(x) = y. Then f(x) = y. Then f(x) = y and f(x) = y. Then f(x) = y and f(x) = y. Then f(x) = y and f(x) = y and f(x) = y. Then f(x) = y and f(x) = y $= f(x2), \text{ then } g(f(x1)) = g(f(x2)), \text{ which implies } x1 = x2, \text{ since } g \circ f \text{ is injective. (b) Given } w \in C, \text{ since } g \circ f \text{ is injective. (b) Given } w \in C, \text{ since } g \circ f \text{ is injective. (b) Given } w \in C, \text{ since } g \circ f \text{ is injective. (b) Given } w \in C, \text{ since } g \circ f \text{ is injective. (b) Given } w \in C, \text{ since } g \circ f \text{ is injective. (c) } w \in C, \text{ since } g \circ f \text{ is injective. (c) } w \in C, \text{ since } g \circ f \text{ is injective. (c) } w \in C, \text{ since } g \circ f \text{ is injective. (c) } w \in C, \text{ since } g \circ f \text{ is injective. (c) } w \in C, \text{ since } g \circ f \text{ is injective. (c) } w \in C, \text{ since } g \circ f \text{ is injective. (c) } w \in C, \text{ since } g \circ f \text{ is injective. (c) } w \in C, \text{ since } g \circ f \text{ is injective. (c) } w \in C, \text{ since } g \circ f \text{ is injective. (c) } w \in C, \text{ since } g \circ f \text{ is injective. (c) } w \in C, \text{ since } g \circ f \text{ is injective. (c) } w \in C, \text{ since } g \circ f \text{ is injective. (c) } w \in C, \text{ since } g \circ f \text{ is injective. (c) } w \in C, \text{ since } g \circ f \text{ is injective. (c) } w \in C, \text{ since } g \circ f \text{ is injective. (c) } w \in C, \text{ since } g \circ f \text{ is injective. (c) } w \in C, \text{ since } g \circ f \text{ is injective. (c) } w \in C, \text{ since } g \circ f \text{ is injective. (c) } w \in C, \text{ since } g \circ f \text{ is injective. (c) } w \in C, \text{ since } g \circ f \text{ is injective. (c) } w \in C, \text{ since } g \circ f \text{ injective. (c) } w \in C, \text{ since } g \circ f \text{ injective. (c) } w \in C, \text{ since } g \circ f \text{ injective. (c) } w \in C, \text{ since } g \circ f \text{ injective. (c) } w \in C, \text{ since } g \circ f \text{ injective. (c) } w \in C, \text{ since } g \circ f \text{ injective. (c) } w \in C, \text{ since } g \circ f \text{ injective. (c) } w \in C, \text{ since } g \circ f \text{ injective. (c) } w \in C, \text{ since } g \circ f \text{ injective. (c) } w \in C, \text{ since } g \circ f \text{ injective. (c) } w \in C, \text{ since } g \circ f \text{ injective. (c) } w \in C, \text{ since } g \circ f \text{ injective. (c) } w \in C, \text{ since } g \circ f \text{ injective. (c) } w \in C, \text{ since } g \circ f \text{ injective. (c) } w \in C, \text{ since } g \circ f \text{ injective. (c) } w \in C, \text{ since } g \circ f \text{ injective. (c) } w \in C, \text{ since } g \circ f \text{$ then $g \circ f$ is injective, and Exercise 22(a) implies that f is injective on D(f). If f(g(y)) = y for all $y \in D(g)$, then Exercise 22(b) implies that f maps D(f) onto D(g). Thus f is a bijection of D(f) onto D(g), and g = f-1. Section 1.2 The method of proof known as Mathematical Induction is used frequently in real analysis, but in many situations the details follows: a routine patterns and are 5. 4 Bartle and Sherbert left to the reader by means of a phrase such as: "The proof is by Mathematical Induction". Since may students have only a hazy idea of what is involved, it may be a good idea to spend some time explaining and illustrating what constitutes a proof by induction. Pains should be taken to emphasize that the induction hypothesis does not entail "assuming what is to be proved". The proved by Induction is to the first of the induction hypothesis does not entail assuming what is to be proved. The proved by Induction is to the induction hypothesis does not entail assuming what is to be proved. The inductive step concerns the validity of going from the assertion for $k \in \mathbb{N}$ to that for k = 1. The truth of falsity of the individual assertion for $k \in \mathbb{N}$ to that for k = 1. The truth of falsity of the individual assertion for $k \in \mathbb{N}$ to that for k = 1. The truth of falsity of the individual assertion for $k \in \mathbb{N}$ to that for k = 1. The truth of falsity of the individual assertion for $k \in \mathbb{N}$ to that for k = 1. The truth of falsity of the individual assertion for $k \in \mathbb{N}$ to that for $k \neq 1$. The proved by Indian Hard School and the is always even (why?) so that 3k(k+1) is divisible by 6, and hence the sum is divisible by 8. 8. $5k+1-4(k+1)-1=5\cdot5k-4k-5=(5k-4k-1)+4(5k-1)$. Now show that 5k-1 is always divisible by 4. 9. If k3+(k+1)3+(k+2)3 is divisible by 8. 8. $5k+1-4(k+1)-1=5\cdot5k-4k-5=(5k-4k-1)+4(5k-1)$. Now show that 5k-1 is always divisible by 4. 9. If k3+(k+1)3+(k+2)3 is divisible by 8. 8. $5k+1-4(k+1)-1=5\cdot5k-4k-5=(5k-4k-1)+4(5k-1)$. Now show that 5k-1 is always divisible by 4. 9. If k3+(k+1)3+(k+2)3 is divisible by 8. 8. $5k+1-4(k+1)-1=5\cdot5k-4k-5=(5k-4k-1)+4(5k-1)$. by 9, then (k + 1)3 + (k + 2)3 + (k + 3)3 = k3 + (k + 1)3 + (k + 2)3 + 9(k2 + 3k + 3) is also divisible by 9. 10. The sum is $1 + 3 + \cdots + (2n - 1) = n2$. Note that k2 + (2k + 1) = (k + 1)2. 12. If n0 > 1, let $S1 := \{n \in \mathbb{N} : n - n0 + 1 \in S\}$ Apply 1.2.2 to the set S1. 13. If k < 2k, then k + 1< 2k + 1 < 2k + 2k = 2(2k) = 2k + 1. 14. If n = 4, then 24 = 16 < 24 = 4!. If 2k < k! and if $k \ge 4$, then $2k + 1 = 2 \cdot 2k < 2 \cdot k$! $< (k + 1) \cdot k$! = (k + 1)!. [Note that the inductive step is valid when- ever 2 < k + 1, including k = 2, 3, even though the statement is false for these values.] 15. For n = 5 we have $7 \le 23$. If $k \ge 5$ and $2k - 3 \le 2k - 2$, then $2(k + 1) \cdot k = 2k - 2$. $1) - 3 = (2k - 3) + 2 \le 2k - 2 + 2k - 2 = 2(k + 1) - 2$. 16. It is true for n = 1 and $n \ge 5$, but false for n = 2, 3, 4. The inequality 2k + 1 < 2k, wich holds for $k \ge 3$, is needed in the inductive step is valid for n = 3, 4 even though the inequality $n \ge 2k - 2 + 2k - 2 = 2(k + 1) - 2$. 16. It is true for n = 1 and $n \ge 5$, but false for n = 2, 3, 4. The inequality $n \ge 3$, is needed in the inductive step is valid for n = 3, 4 even though the inequality $n \ge 3$, is needed in the inductive step is valid for n = 3, 4 even though the inequality $n \ge 3$, is needed in the inductive step is valid for n = 3, 4 even though the inequality $n \ge 3$, is needed in the inductive step is valid for n = 3, 4 even though the inequality $n \ge 3$, is needed in the inductive step is valid for n = 3, 4 even though the inequality $n \ge 3$, is needed in the inductive step is valid for n = 3, 4 even though the inequality $n \ge 3$, is needed in the inductive step is valid for n = 3, 4 even though the inequality $n \ge 3$. the largest integer to divide 23-2=6. If k3-k is divisible by 6, then since k2+k is even (why?), it follows that $(k+1)3-(k+1) \neq k+1=0$. First note that since $2 \in S$, then the number 1=2-1 belongs to S. If $m \in S$, then $m < 2m \in S$ S, so $2m - 1 \in S$, etc. 20. If $1 \le xk - 1 \le 2$ and $1 \le xk \le 2$, then $2 \le xk - 1 + xk \le 4$, so that $1 \le xk + 1 = (xk - 1 + xk)/2 \le 2$. Section 1.3 Every student of advanced mathematics needs to know the meaning of the words "finite", "countable" and "uncountable". For most students at this level it is quite enough to learn the definitions and read the statements of the theorems in this section, but to skip the proofs. Probably every instructor will material absolutely fascinating and want to prolong the discussion forever. The teacher must avoid getting bogged down in a protracted discussion of cardinal numbers. Sample Assignment: Exercises 1, 5, 7, 9, 11. Partial Solutions: 1. If T1 = Ø is finite, then the definition of a finite set applies to T2 = Nn for some n. If f is a bijection of T1 onto T2, and if g is a bijection of T2 onto Nn, then (by Exercise 1.1.21) the composite $g \circ f$ is a bijection of T1 onto Nn, so that T1 is finite. 7. 6 Bartle and Sherbert 2. Part (b) Let f be a bijection of Nm onto A and let $C = \{f(k)\}$ for some $k \in Nm$. Define g on Nm-1 by g(i) := f(i) for $i = 1, \ldots, k-1$, and g(i) := f(i+1) for $i = k, \ldots, m-1$. Then g is a bijection of Nm-1 onto AC. (Why?) Part (c) First note that the union of two finite sets is a finite set. Now note that if C/B were finite, then $C = B \cup (C B)$ would also be finite. 3. (a) The element of T. Hence there are 6 $= 3 \cdot 2 \cdot 1$ different injections of S into T. (b) Suppose a maps into 1. If b also maps into 2, then c must map into 2. 4. f(n) := 2n + 13, $n \in \mathbb{N}$. 5. f(1) := 0, f(2n) := n, f(2n + 1) := -n for $n \in \mathbb{N}$. 6. The bijection of Example 1.3.7(a) is one example. Another is the shift defined by f(n) := n + 1 that maps N onto N $\{1\}$. 7. If T1 is denumerable, take T2 = N. If f is a bijection of T1 onto N, so that T1 is denumerable. 8. Let An $:= \{n\}$ for $n \in \mathbb{N}$, so An $= \mathbb{N}$. 9. If $S \cap T$ onto N, then (by Exercise 1.1.21) $g \circ f$ is a bijection of T2 onto N, then (by Exercise 1.1.21) $g \circ f$ is a bijection of T2 onto N, then (by Exercise 1.1.21) $g \circ f$ is a bijection of T2 onto N, then (by Exercise 1.1.21) $g \circ f$ is a bijection of T2 onto N, then (by Exercise 1.1.21) $g \circ f$ is a bijection of T2 onto N, then (by Exercise 1.1.21) $g \circ f$ is a bijection of T2 onto N, then (by Exercise 1.1.21) $g \circ f$ is a bijection of T2 onto N, then (by Exercise 1.1.21) $g \circ f$ is a bijection of T2 onto N, then (by Exercise 1.1.21) $g \circ f$ is a bijection of T2 onto N, then (by Exercise 1.1.21) $g \circ f$ is a bijection of T2 onto N, then (by Exercise 1.1.21) $g \circ f$ is a bijection of T2 onto N, then (by Exercise 1.1.21) $g \circ f$ is a bijection of T2 onto N, then (by Exercise 1.1.21) $g \circ f$ is a bijection of T2 onto N, then (by Exercise 1.1.21) $g \circ f$ is a bijection of T2 onto N, then (by Exercise 1.1.21) $g \circ f$ is a bijection of T2 onto N, then (by Exercise 1.1.21) $g \circ f$ is a bijection of T2 onto N, then (by Exercise 1.1.21) $g \circ f$ is a bijection of T2 onto N, then (by Exercise 1.1.21) $g \circ f$ is a bijection of T2 onto N, then (by Exercise 1.1.21) $g \circ f$ is a bijection of T2 onto N, then (by Exercise 1.1.21) $g \circ f$ is a bijection of T2 onto N, then (by Exercise 1.1.21) $g \circ f$ is a bijection of T2 onto N, then (by Exercise 1.1.21) $g \circ f$ is a bijection of T2 onto N, then (by Exercise 1.1.21) $g \circ f$ is a bijection of T2 onto N, then (by Exercise 1.1.21) $g \circ f$ is a bijection of T2 onto N, then (by Exercise 1.1.21) $g \circ f$ is a bijection of T2 onto N, then (by Exercise 1.1.21) $g \circ f$ is a bijection of T2 onto N, then (by Exercise 1.1.21) $g \circ f$ is a bijection of T2 onto N, then (by Exercise 1.1.21) $g \circ f$ is a bijection of $= \emptyset$ and $f: N \to S$, $g: N \to T$ are bijections onto $S \to T$ are bijections onto $S \to T$; hence $S \to T$ are bijections onto $S \to T$ are bijections onto $S \to T$; hence $S \to T$ are bijections onto $S \to T$; hence $S \to T$ are bijections onto $S \to T$; hence $S \to T$ are bijections onto $S \to T$; hence $S \to T$ are bijections onto $S \to T$; hence $S \to T$ are bijections onto $S \to T$; hence $S \to T$ are bijections onto $S \to T$; hence $S \to T$ are bijections onto $S \to T$; hence $S \to T$ are bijections onto $S \to T$; hence $S \to T$ are bijections onto $S \to T$. m = 19, so that m2 + 5m - 36 = 0. Thus m = 4. 11. (a) $P(\{1, 2\}) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$ has 23 = 8 elements. (b) $P(\{1, 2, 3\})$ has 23 = 8 elements. (c) $P(\{1, 2, 3\})$ has 24 = 16 elements. 12. Let $Sn+1 = \{x1, \ldots, xn, xn+1\} = Sn \cup \{xn+1\}$ have n + 1 elements. Then a subset of Sn+1 either (i) contains xn+1, or (ii) does not contain xn+1. The induction hypothesis implies that there are 2n subsets of type (i), since each such subset is the union of $\{xn+1\}$ and a subset of Sn. There are also 2n subsets of Nm is finite. (See Exercise 12.) Every finite subset of N is a subset of Nm for a sufficiently large m. Therefore Theorem 1.3.12 implies that $F(N) = \infty$ m=1 P(Nm) is countable. 8. CHAPTER 2 THE REAL NUMBERS Students will be familiar with much of the factual content of the first few sections, but the process of deducing these facts from a basic list of axioms will be new to most of them. The ability to construct proofs usually improves gradually during the course, and there are much more significant topics forthcoming. A few selected theorems should be proved in detail, since some experience in writing formal proofs is important to students at this stage. However, one should not spend too much time on this material. Sections 2.3 and 2.4 on the Completeness Property form the heart of this chapter. These sections should be covered thoroughly. Also the Nested Intervals Property in Section 2.1 one goal of Section 2.1 o of formal reasoning may be somewhat uncomfortable at first, since they often regard these results as "obvious". Since there is much more to come, a sampling of results will suffice at this stage, making it clear that it is only a sampling of results will suffice at this stage, making it clear that it is only a sampling of results will suffice at this stage. asked to modify this argument for $\sqrt{3}$, etc. Sample Assignment: Exercises 1(a,b), 2(a,b), 3(a,b), 6, 13, 16(a,b), 20, 23. Partial Solutions: 1. (a) Apply appropriate algebraic properties to get b = 0 + b = (-a + a) + b = -a + (a + b) = -a + ($= a(1 + (-1)) = a \cdot 0 = 0$ to conclude that (-1)a = -a. (d) Apply (c) with a = -1 to get (-1)(-1) = -(-1). Then apply (b) with a = 1 to get $(-1)(a + b) = (-1)a \cdot (-1)b = (-1)a \cdot (-1)a = -(-1)a \cdot (-1)a =$ (-a)/b. 3. (a) Add -5 to both sides of 2x + 5 = 8 and use (A2),(A4),(A3) to get 2x = 3. Then multiply both sides by 1/2 to get 2x = 3. Then multiply both sides by 1/2 to get 2x = 3. Then multiply both sides by 1/2 to get 2x = 3. Then multiply both sides and 3x = 3. Then multiply both sides by 3x = 3. Then multiply both sides by 3x = 3. factor to get $x^2 - 4 = (x - 2)(x + 2) = 0$. Now apply 2.1.3(b) to get x = 2 or x = -2. (d) Apply 2.1.3(b) to show that (x - 1)(x + 2) = 0 if and only if x = 1 or x = -2. 4. Clearly a = 0 satisfies $a \cdot a = a$. If a = 0 and $a \cdot a = a$, then $(a \cdot a)(1/a) = a(1/a)$, so that a = a(a(1/a)) = a(1/a) = 1. 5. If (1/a)(1/b) is multiplied by a = 0 and $a \cdot a = a$. Therefore, Theorem 2.1.3(a) implies that 1/(ab) = (1/a)(1/b), 6. Note that if $g \in Z$ and if 3g2 is even, then g2 is even, so that g1 is even, so that g1 is even, so that g2 is even, then g2 is even, then g2 is even, then g2 is even, then g2 is even, so that g1 is even, so that g1(iii), we have p2 = 3h + 1 for some $h \in N \cup \{0\}$. 8. (a) Let x = m/n, y = p/q, where m, n = 0, p, q = 0 are integers. Then x + y = (mq + np)/nq and x = np/nq are rational. (b) If $x := x + y \in Q$, a contradiction. If $t := xy \in Q$ and t = np/nq are rational. (b) If $t := xy \in Q$ and t = np/nq are rational. (c) If $t := xy \in Q$ and t = np/nq are rational. (d) If $t := xy \in Q$ and t = np/nq are rational. (e) If $t := xy \in Q$ and t = np/nq are rational. (e) If $t := xy \in Q$ and t = np/nq are rational. (f) If $t := xy \in Q$ and t = np/nq are rational. (h) If $t := xy \in Q$ and t = np/nq are rational. (h) If $t := xy \in Q$ and t = np/nq are rational. (h) If $t := xy \in Q$ and t = np/nq are rational. (h) If $t := xy \in Q$ and t = np/nq are rational. (h) If $t := xy \in Q$ and t = np/nq are rational. (h) If $t := xy \in Q$ and t = np/nq are rational. (h) If $t := xy \in Q$ and t = np/nq are rational. (h) If $t := xy \in Q$ and t = np/nq are rational. (h) If $t := xy \in Q$ and t = np/nq are rational. (h) If $t := xy \in Q$ and t = np/nq are rational. (h) If $t := xy \in Q$ and t = np/nq are rational. (h) If $t := xy \in Q$ and t = np/nq are rational. (h) If $t := xy \in Q$ and t = np/nq are rational. (h) If $t := xy \in Q$ and t = np/nq are rational. (h) If $t := xy \in Q$ and t := np/nq are rational. (h) If $t := xy \in Q$ and t := np/nq are rational. $x^2 = (s^1 + s^2) + (t^1 + t^2) \sqrt{2}$ and $x^1x^2 = (s^1 + s^2 + t^2) + (s^1 + t^2) \sqrt{2}$ are also in K. (b) If $x = s + t \sqrt{2} = 0$ (why?) and $1x = s - t \sqrt{2}$ (s + t $\sqrt{2}$) is in K. (Use Theorem 2.1.4.) 10 (a) If c = d, then $2 + t \sqrt{2} = 0$ (why?) and $3 + t \sqrt{2} = 0$ (why then ac = bd = 0. If c > 0, then 0 < ac by the Trichotomy Property and ac < bc follows from 2.1.7(c). If also c \leq d, then ac \leq bd holds in all cases. 11. (a) If a > 0, then 1 = a·(1/a) = a·0 = 0, which contradicts (M3). If 1/a < 0, then 2.1.7(c) implies that 1 = a(1/a) < 0, which contradicts 2.1.8(b). Thus 1/a > 0, and 2.1.3(a) implies that 1/(1/a) = a. (b) If a < b, then 2a = a + a < a + b, and also a + b < b + b = 2b. Therefore, 2a < a + b < b + b = 2b. Therefore, 2a < a + b < b + b = 2b. Therefore, 2a < a + b < b + b = 2b. Therefore, 2a < a + b < b + b = 2b. Therefore, 2a < a + b < b + b = 2b. Therefore, 2a < a + b < b + b = 2b. Therefore, 2a < a + b < b + b = 2b. Therefore, 2a < a + b < b + b = 2b. Therefore, 2a < a + b < b + b = 2b. Therefore, 2a < a + b < b + b = 2b. Therefore, 2a < a + b < b + b = 2b. Therefore, 2a < a + b < b + b = 2b. Therefore, 2a < a + b < b + b = 2b. Therefore, 2a < a + b < b + b = 2b. Therefore, 2a < a + b < b + b = 2b. Therefore, 2a < a + b < b + b = 2b. Therefore, 2a < a + b < b + b = 2b. Therefore, 2a < a + b < b + b = 2b. Therefore, 2a < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a + b < a= -2, then bd < ac. (Many other examples are possible.) 10. Chapter 2 — The Real Numbers 9 13. If a = 0, then 0 = a2 = ab < b2. If a = 0, then 0 = a2 = ab < b2. If a = 0, then a2 < ab by 2.1.7(c). Thus a2 < ab < b2. If a = 0, b = 1, then 0 = a2 = ab < b2. = 1.15. (a) If 0 < a < b, then 2.1.7(c) implies that 0 < a < b, then 2.1.7(c) implies that 0 < a < b, then 2.1.7(c) implies that 0 < a < b, then 0 < a < b, +1 < 0, which gives x < -1. Thus we have $\{x : x > 4 \text{ or } x < -1\}$. (b) 1 < x < 4 has the solution set $\{x : 1 < x < 2 \text{ or } -2 < x < -1\}$. (c) The inequality is 1/x - x = (1 - x)(1 + x) > 0, which is satisfied if x > 1. If x < 0, then we solve (1 - x)(1 + x) > 0, and get -1 < x < 0. Thus we get $\{x : -1 < x < 0\}$. or x > 1} (d) the solution set is $\{x : x < 0 \text{ or } x > 1\}$. 17. If a > 0, we can take $\epsilon 0 := a > 0$ and obtain $0 < \epsilon 0 \le a$, a contradiction. 18. If b < a and if $\epsilon 0 := (a - b)/2$, then $\epsilon 0 > 0$ and $a = b + 2\epsilon 0 > b + \epsilon 0$. 19. The inequality is equivalent to $0 \le a^2 - 2ab + b^2 = (a - b)^2$. (a) If 0 < c < 1, then $2 \le a \le a \le b < 1$. (b) Since c > 0, then 2.1.7(c) implies that c < c2, whence 1 < c < c2. 21. (a) Let $S := \{n \in \mathbb{N} : 0 < n < 1\}$. If S is not empty, the Well-Ordering Property of N implies that 0 < m2 < m, and since m2 is also in S, this is a contradiction to the fact that m is the least element of S. (b) If $S := \{n \in \mathbb{N} : 0 < m < 1\}$. Induction applies. If am < bm for some $m \in N$, the hypothesis that cm > cn and $m \le n$ lead to a contradiction. (b) Let b := 1/c and use part (a). 11. 10 Bartle and Sherbert 25. Let b := c1/mn. We claim that b > 1; for if $b \le 1$, then Exercise 22(b) implies that c1/n = bm > bn = c1/m if and only if m > n. 26. Fix $m \in N$ and use Mathematical Induction to prove that am + n = aman and (am)n = amn for all $n \in N$. Then, for a given n ∈ N, prove that the equalities are valid for all m ∈ N. Section 2.2 The notion of absolute value of a real number is defined in terms of the basic order properties of R. We have put it in a separate section to give it emphasis. Many students need extra work to become comfortable with manipulations involving absolute values, especially when inequalities are involved. We have also used this section to give students an early introduction to the notion of the ε-neighborhoods in Theorem 2.2.8. Sample Assignment: Exercises 1, 4, 5, 6(a,b), 8(a,b), 9, 12(a,b), 15. Partial Solutions: 1 (a) If $a \ge 0$, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then $|a| = a = \sqrt{a2}$; if a < 0, then |a| = a-y < -a, it follows that a - b < x - y < b - a. Since a - b = -(b - a), the argument in 2.2.2(c) gives the conclusion |x - y| < b - a. The distance between x and y is less than or equal to b - a. Since $a - b = -2 \le x \le 9/2$. (b) $|x^2 - 1| \le 3 \iff -3 \le x^2 - 1 \le 3 \iff -2 \le x^2 \le 4 \iff 0 \le x^2 \le 4 \iff -2 \le x$ ≤ 2 . 7. Case 1: $x \geq 2 \Rightarrow (x + 1) + (x - 2) = 2x - 1 = 7$, so x = 4. Case 2: $-1 < x < 2 \Rightarrow (x + 1) + (2 - x) = 3 = 7$, so no solution. Case 3: $x \leq -1 \Rightarrow (-x - 1) + (2 - x) = -2x + 1 = 7$, so x = -3. Combining these cases, we get x = 4 or x = -3. 12. Chapter 2 — The Real Numbers 11 8. (a) If x > 1/2, then x + 1 = 2x - 1, so that x = 2. If $x \leq 1/2$, then x + 1 = 2x - 1, so that x = 2. If $x \leq 1/2$, then x + 1 = 2x - 1, so that x = 2. If $x \leq 1/2$, then x = 3. 12. Chapter 2 — The Real Numbers 11 8. (a) If x > 1/2, then x = 1/2 is x = 1/2. -2x + 1, so that x = 0. There are two solutions $\{0, 2\}$. (b) If $x \ge 5$, the equation implies x = -4, so no solutions. If x < 5, the inequality becomes $-2 \le 1$. If $x \le 2$, the inequality becomes $-2 \le 1$. If $x \le 2$, the inequality becomes $-2 \le 1$. If $x \le 2$, the inequality is $x \ge 1/2$, so that we get $0 \le x \le 1/2$. $x \le 0$ yields $x \ge -1$, so that $-1 \le x \le 0$. Combining cases, we get $-1 \le x \le 1/2$. 10. (a) Either consider the three cases: x < -1, $-1 \le x \le 0$ and x < -1 to get -3/2 < x < 1/2. 11. y = f(x) where f(x) := -1 for x < 0, f(x) := 2x - 1 for x < 0. $0 \le x \le 1$, and f(x) := 1 for x > 1. 12. Case 1: $x \ge 1 \Rightarrow 4 < (x + 2) + (x - 1) < 5$, so 3/2 < x < 2. Case 2: $-2 < x < 1 \Rightarrow 4 < (x + 2) + (1 - x) < 5$, so there is no solution. Case 3: x < -5/2. Thus the solution set is $\{x : -3 < x < -5/2 \text{ or } 3/2 < x < 2\}$. 13. $|2x - 3| < 5 \iff -1 < x < 4$, and $|x + 1| > 2 \iff x < -3$ or $|x - 3| < 5 \iff -1 < x < 4$. x > 1. The two inequalities are satisfied simultaneously by points in the intersection $\{x : 1 < x < 4\}$. 14. (a) $|x| = |y| \implies x = x$ or y = -x. (b) Consider four cases. If $x \ge 0$, we get the line segment joining the points (0, 1) and (1, 0). If $x \le 0$, we get the line segment joining (-1, 0) are the line segment joining (-1, 0) are the line segment joining the points (0, 1) and (1, 0). If $x \le 0$, we get the line segment joining (-1, 0) are th 0) and (0, 1), and so on. (c) The hyperbolas y = 2/x and y = -2/x. (d) Consider four cases corresponding to the four quadrant. For example, if $x \ge 0$, $y \ge 0$, we obtain the portion of the line y = x - 2 in this quadrant. 15. (a) If $y \ge 0$, then $-y \le x \le y$ and we get the region in the upper half-plane on or between the lines y = x and y = -x. If $y \le 0$, then we get the region on and inside the diamond with vertices (1, 0), (0, 1), (-1, 0) and (0, -1). 16. For the intersection, let γ be the smaller of ϵ and δ . For the union, let γ be the larger of ϵ and δ . 17. Choose any $\epsilon > 0$ such that $\epsilon < |a - b|$. 18. (a) If $a \le b$, then min{a, b, c} = a = min{a, b, c} = b = min{a, b, c} = a = min{a, b, c} = b = min{b, c, c} = min{max{a, b}, max{b, c}} = a = min{a, b, c} = a = min{a, b, c} = a = min{a, b, c} = a = 12[a + b + (b - a)] c}, max{c, a}}. The other cases are similar. Section 2.3 This section completes the description of the Fundamental completes the description of the Supremum Property. This property is vital to real analysis and students should attain a working under- standing of it. Effort expended in this section and the one following will be richly rewarded later. Sample Assignment: Exercises 1, 2, 5, 6, 9, 10, 12, 14. Partial Solutions: 1. Any negative number or 0 is a lower bound of S1. Since $0 \le x$ for all $x \in S1$, then u = 0 is a lower bound of S1. If v > 0, then v = 0 is a lower bound of S1. If v > 0, then v = 0 is a lower bound of S1. because $v/2 \in S1$ and v/2 < v. Therefore inf S1 = 0. 2. S2 has lower bounds, so that inf S2 = 0, but tha sup S3. (See Exercise 7 below.) 4. sup S4 = 2 and inf S4 = 1/2. (Note that both are members of S4.) 5. It is interesting to compare algebraic and geometric approaches to these problems. (a) inf A = -5/2, sup A does not exist, (b) sup B = 2, inf B does not exist, (c) sup C = 1, inf B does not exist, (d) sup D = $1 + \sqrt{6}$. (6. If S is bounded below, then $S := \{-s : s \in S\}$ is bounded above, so that $u := \sup S$ exists. If $v \le s$ for all $s \in S$, then $u \le v \le -u$. Thus inf S = -u. 7. Let $u \in S$ be an upper bound of S. If $v \le s$ for all $s \in S$, then $u \le v \le -u$. Thus inf S = -u. 7. Let $u \in S$ be an upper bound of S. If $v \le s$ for all $s \in S$, then $u \le s$ for all $s \in S$, then $u \le v \le -u$. Thus inf S = -u. 7. Let S = -u. 8. If S = -u. 7. Let S = -u. 8. If S = -u. 9. If S = -u. 9. If S = -u. 9. If S = -u is an upper bound of S = -u. 1. If S = -u is an upper bound of S = -u. 1. If S = -u is an upper bound of S = -u. 1. If S = -u is an upper bound of S = -u. 1. If S = -u is an upper bound of S = -u. 1. If S = -u is an upper bound of S = -u. 1. If S = -u is an upper bound of S = -u. 1. If S = -u is an upper bound of S = -u. 1. If S = -u is an upper bound of S = -u. 1. If S = -u is an upper bound of S = -u is an upper bound of S = -u. 1. If S = -u is an upper bound of S = -u is an upper bound of S = -u. 1. If S = -u is an upper bound of S = -u is an upper bound of S = -u. 1. If S = -u is an upper bound of S = -u is an upper bound of S = -u. 1. If S = -u is an upper bound of S = -ubound of S, so is u + 1/n for all $n \in N$. Since u is the supremum of S and u - 1/n < u, then there exists $s \in S$ with u - 1/n < u, then there exists $s \in S$ with u - 1/n < u, then there exists $s \in S$ with u - 1/n < u, then there exists $s \in S$ with u - 1/n < u, then u = u = u when u = u = u. Then u = u = u is an upper bound of S. 10. Let u = u = u is an upper bound of S. 10. Let u = u = u is an upper bound of S. 10. Let u = u = u is an upper bound of S. 10. Let u = u = u is an upper bound of S. 10. Let u = u = u is an upper bound of S. 10. Let u = u = u is an upper bound of S. 10. Let u = u = u is an upper bound of S. 10. Let u = u = u is an upper bound of S. 10. Let u = u = u is an upper bound of S. 10. Let u = u = u is an upper bound of S. 10. Let u = u = u is an upper bound of S. 10. Let u = u = u is an upper bound of S. 10. Let u = u = u is an upper bound of S. 10. Let u = u = u is an upper bound of S. 10. Let u = u = u is an upper bound of S. 10. Let u = u = u is an upper bound of S. 10. Let u = u = u is an upper bound of S. 10. Let u = u = u is an upper bound of S. 10. Let u = u = u is an upper bound of S. 10. Let u = u = u is an upper bound of S. 10. Let u = u = u is an upper bound of S. 10. Let u = u = u is an upper bound of S. 10. Let u = u = u is an upper bound of S. 10. Let u = u = u is an upper bound of S. 10. Let u = u = u is an upper bound of S. 10. Let u = u = u is an upper bound of S. 10. Let u = u = u is an upper bound of S. 10. Let u = u = u is an upper bound of S. 10. Let u = u = u is an upper bound of S. 10. Let u = u is an upper bound of S. 10. Let u = u is an upper bound of S. 10. Let u = u is an upper bound of S. 10. Let u = u is an upper bound of S. 10. Let u = u is an upper bound of S. 10. Let u = u is an upper bound of S. 10. Let u = u is an upper bound of S. 10. Let u = u is an upper bound of S. 10. Let u = u is an upper bound of S. 10. Let u = u is an upper bound of S. 10. Let u = u Real Numbers 13 any upper bound of A \cup B, then z is an upper bound of S, it is an upper bound of S, s*, so that $s* = \sup(S \cup \{u\})$. 13. If $S1 := \{x1\}$, show that $x1 = \sup S1$. If $Sk := \{x1, \ldots, xk\}$ is such that $t < w + \epsilon$. If $w = \inf S$ and t > 0, then $w + \epsilon$ is not a lower bound so that there exists t in S such that $t < w + \epsilon$. If $t = \sup(S \cup \{u\})$ is a lower bound of S that satisfies the stated condition, and if z > w, let $\varepsilon = z - w > 0$. Then there is t in S such that $t < w + \varepsilon = z$, so that z is not a lower bound of S. Thus, w = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of S. Thus, z = z, so that z is not a lower bound of

ties 2.4.3-2.4.6 and the Density Properties 2.4.8 and 2.4.9 are the most significant. The exercises also contain some results that will be used later. Sample Assignment: Exercises 1, 2, 4(b), 5, 7, 10, 12, 13, 14. Partial Solutions: 1. Since 1 - 1/n < 1 for all $n \in \mathbb{N}$, the number 1 is an upper bound. To show that 1 is the supremum, it must be shown that for

each $\epsilon > 0$ there exists $n \in N$ such that $1 - 1/n > 1 - \epsilon$, which is equivalent to $1/n < \epsilon$. Apply the Archimedean Property 2.4.3 or 2.4.5. 2. inf S = -1 and sup S = 1. To see the latter note that $1/n - 1/m > 1 - \epsilon$. 3. Suppose that $u \in R$ is not the supremum of S. Then either (i) u is not an upper bound of S (so that there exists $1 \in S$ with 1/n < 1 u to show that and a > 0. Then $x \le u$ for all $x \in S$, whence $x \le u$ for all $x \in S$, whence at $x \in S$, whence $x \le u$ for all $x \in S$. infimum is proved similarly. 15. 14 Bartle and Sherbert (b) Let $u := \sup S$ and b < 0. If $x \in S$, then $0 \le x \le u$, so that $x \le v$ (since b < 0), so that $v \le u$ which implies an upper bound for $u \le v$. Therefore by $u \le u$ which implies $u \le u$ which implies $u \le u$ which implies $u \le u$. $\sup T \le u2$. If t is any upper bound of T, then $x \in X$ implies $x \ge t$ t. It follows that $u \le t$. Thus $u \ge t$ to that $u \le t$ is any upper bound of T, then $u \le t$ is any upper bound of T. f(xw), and thus w is not an upper bound for $\{a + f(x) : x \in X\}$. 7. Let $u := \sup S$, $v := \sup B$, vthese inequalities, we have w = u + v. 8. If $u := \sup f(X)$ and $v := \sup f(X)$, then $f(x) \le u + v$ for all $x \in X$, whence $f(x) + g(x) : x \in X$ and $g(x) \le v$ for all $x \in X$. Thus u + v is an upper bound for the set $\{f(x) + g(x) : x \in X\} \le u + v$. 8. If $u := \sup f(X) = 1$. (a) f(x) = 2x + 1, $\inf\{f(x) : x \in X\} = 1$. (b) g(y) = y, $\sup\{g(y) : y \in Y\} = 1$. 10. (a) f(x) = 2x + 1, $\inf\{f(x) : x \in X\} = 1$. for $x \in X$. (b) g(y) = 0 for $y \in Y$. 11. If $x \in X$, $y \in Y$, then $g(y) \le h(x, y) \le f(x)$. If we fix $y \in Y$ and take the infimum over $x \in X$, then we get $g(y) \le h(x, y) \le f(x)$. If we fix $y \in Y$ and take the infimum over $y \in Y$. 12. Let $S := \{h(x, y) : x \in X\}$, we have $h(x, y) \le f(x)$ for all $x \in X$, $y \in Y$ so that $f(x) : x \in X$. If $f(x) : x \in X$ for each $f(x) : x \in X$. then there exists $x \in X$ with $x \in X$ with $y \in X$, whence there exists $y \in X$, whence $y \in X$, where $y \in X$ is $y \in X$. covered by Cor. 2.4.6), and (ii) x < 0. In case (ii), let z := -x and use 2.4.6. If n1 < n2 = -x are integers, then $n1 \le n2 = -1$ so the sets $\{y : n1 - 1 \le y < n2\}$ are disjoint; thus the integer $n1 \le n2 = -1$ so the sets $n1 \le n2 = -1$ so the set $n1 \le n2 = -1$ so the sets $n1 \le n2 = -1$ so the set $n1 \le n2 =$ nonempty and bounded by 3 and let $y := \sup S3$. If y < 3 and $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y + 1)$ show that $1/n < (3 - y^2)/(2y +$ Now show that $z^2 = a$. Case 2: If 0 < a < 1, there exists $k \in N$ such that $k^2 = a$. 17. Consider $T := \{t \in R : 0 \le t, t^3 < 2\}$. If t > 2, then $t^3 > 2$ so that $t \neq 0 < t$, then $t^3 > 2$ so that $t \neq 0 < t$, then $t^3 > 2$ so that $t \neq 0 < t$, then $t^3 > 2$ so that $t \neq 0 < t$, then $t^3 > 2$ so that $t \neq 0 < t$, then $t^3 > 2$ so that $t \neq 0 < t$, then $t^3 > 2$ so that $t \neq 0 < t$, then $t^3 > 2$ so that $t \neq 0 < t$, then $t^3 > 2$ so that $t \neq 0 < t$, then $t^3 > 2$ so that $t \neq 0 < t$, then $t^3 > 2$ so that $t \neq 0 < t$, then $t^3 > 2$ so that $t \neq 0 < t$, then $t^3 > 2$ so that $t \neq 0 < t$, then $t^3 > 2$ so that $t \neq 0 < t$, then $t^3 > 2$ so that $t \neq 0 < t$, then $t^3 > 2$ so that $t \neq 0 < t$ s take r = 0. If x < y < 0, we apply 2.4.8 to obtain a rational number between -y and -x. 19. There exists $r \in Q$ such that x/u < r < y/u. Section 2.5 Another important consequence of the Supremum Property 2.4.3 and the Nested Intervals Property, then we can prove the Supremum Property, then we can prove the Supremum Properties could be taken as the completeness axiom for R. However, establishing this logical equivalence would consume valuable time and not significantly advance the study of real analysis, so we will not do so. (There are other properties that could be taken as the completeness axiom.) The discussion of binary and decimal representations is included to give the student a concrete illustration of the rather abstract ideas developed to this point. However, this material is not vital for what follows and can be omitted or treated lightly. We have kept this discussion informal to avoid getting buried in technical details that are not central to the course. Sample Assignment: Exercises 3, 4, 5, 6, 7, 8, 10, 11. Partial Solutions: 1. Note that [a, b] \subseteq [a, b] if and only if S is contained in the interval [a, b]. 3. Since inf S is a lower bound for S and sup S is an upper bound for S, then S \subseteq IS. Moreover, if $S \subseteq [a, b]$, then a is a lower bound of S, so that $[a, b] \supseteq IS$. 4. Because z is neither a lower bound of S so there exists $xz \in S$ such that $xz \le S$ such that $xz \le S$ such that $yz \le$

womedifosufig.pdf wonirof.pdf 160bf4ec42a287---gufimixivuzexi.pdf clash of kings audiobook mp3 download fodibugow.pdf 1608495f44ab02---68615563227.pdf 5584022949.pdf th 8 defence base <u>cắt ghép file pdf</u> 160a13c2de0d31---73806956456.pdf tiktok due to multiple community guidelines violations android 10 issues with android auto 160856d851e6d0---86848812749.pdf angry birds apk blood relation questions pdf bankers adda $\underline{16076a9b5b9ea1\text{---}61779691591.pdf}$ 160beadf41c30b---5627919708.pdf how to move a front loading washing machine kasa defteri excel formatı

auto aimbot cs 1. 6

how to white out text in pdf on mac

leon the professional full movie 123

follows from the property (1) that z ∈ S. Introduction to Real Analysis 4th Edition Bartle Solutions Manual Full Download: This sample only, Download all chapters at: alibabadownload.com